
Tunable Surface Hydrophobicity and Fluid Transport through

Nanoporous Membranes

by

Joseph H.J. Ostrowski

B.S., University of Minnesota, 2009

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry and Biochemistry

2014



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3672475

Published by ProQuest LLC (2015).  Copyright in the Dissertation held by the Author.

UMI Number:  3672475



This thesis entitled:
Tunable Surface Hydrophobicity and Fluid Transport through Nanoporous Membranes

written by Joseph H.J. Ostrowski
has been approved for the Department of Chemistry and Biochemistry

Joel D. Eaves

Robert P. Parson

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



iii

Ostrowski, Joseph H.J. (Ph.D., Chemical Physics)

Tunable Surface Hydrophobicity and Fluid Transport through Nanoporous Membranes

Thesis directed by Joel D. Eaves

There are more than three billion people across the globe that struggle to obtain clean drink-

able water. One of the most promising avenues for generating potable water is through reverse os-

mosis and nanofiltration. Both solutions require a semipermeable membrane that prohibits passage

of unwanted solute particles but allows passage of the solvent. Atomically thin two-dimensional

membranes based on porous graphene show great promise as semipermeable materials, but model-

ing fluid flow on length scales between the microscopic (nanometer and smaller) and macroscopic

(micron and larger) regimes presents formidable challenges. This thesis explores both equilibrium

and nonequilibrium aspects of this problem and develops new methodology for simulating systems

away from thermal equilibrium.

First, we hypothesize that there is a wetting penalty for water as it tries to breach a sheet of

graphene that should be naturally hydrophobic. By using equilibrium molecular dynamics simu-

lations, we show that the hydrophobicity depends sensitively on the degree of electrical doping,

offering an opportunity to tune the hydrophobic effect of graphene using small amounts of doping.

The wetting contact angle, a measure of hydrophobicity, changes dramatically with the voltage

applied to single layer graphene. We find that the sensitivity of the hydrophobic effect to volt-

age depends not on hydrogen bonding motifs at the interface between graphene and water, but

instead on a phenomenon known as electrowetting. The theory of electrowetting predicts that the

difference in surface tensions that defines the contact angle is quartic in the voltage, rather than

quadratic, as it would be in bilayer graphene or in a two-dimensional metal.

To explore the nonequilibrium aspects of fluid passage through atomically thin membranes,

we developed a molecular dynamics methodology for simulating fluid flow at constant flux based

on Gauss’s principle of least constraint. This method develops microscopic equations of motion
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that satisfy specified constraints on the kinetic temperature and total mass flux. As a proof of

principle, we simulate the flow of a simple monoatomic fluid and observe emergent and collec-

tive behaviors consistent with both known hydrodynamic solutions and expectations for velocity

distributions from statistical mechanics. We compare results from the Gauss method simulations

with that of a method commonly used in the literature. By computing the relationship between

the pressure drop across a pipe-like region and the fluid current through it, we find that these two

methods agree quantitatively with one another and comment on the advantages and disadvantages

for both methods.
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Chapter 1

Introduction

In the coming years, the world will be faced with shortages of potable water on a massive

scale.19;21;60 Collecting clean drinkable water is particularly a challenge due to current strain on the

limited freshwater resources across the globe. Desalination of seawater involves separating water

from salt ions and other unwanted particulates or molecules typically using nanoporous membranes

to obtain potable water.8;12;20;60

Membranes with nanoscopic pores can separate unwanted solutes from gases or liquids.2;30;41

In its simplest form, nanoporous semipermeable membranes operate by size exclusion, prohibiting

passage of solute particles based on particle or molecular size while still allowing passage of sol-

vent particles.29 The efficiency of a membrane to purify a fluid or gas is intimately determined by

the size of the nanopore relative to the size of the solute and solvent molecular dimensions. Fluid

behavior near the surface of membranes and inside nanopores or nanochannels is also determined

by interactions between fluid molecules or particles with the membrane. Fluid-membrane interac-

tions could be specific to the functionalization around the entrance of a nanopore,50 or particular

to the surface of the material.23 We are interested in atomically thin membranes because of their

potential utility in nanofiltration applications and unique surface properties. In this thesis we will

focus on both the equilibrium and nonequilibrium properties of thin membranes.

What causes a surface to be hydrophobic? It has been shown that the liquid-solid interface

is distinct from that of a liquid-vapor interface in the case of water near a solid substrate.9;57;58

The hydrogen bond between oxygen and hydrogen in water is approximately six times the avail-
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able thermal energy at room temperature.17 Altering surface composition or properties can start to

compete with the hydrogen bonding network within water.58 However, we will show in Chapter 2

that in the case of electrodoping a graphene surface the main contribution to surface hydrophobicity

is due to a collective effect known as electrowetting.40

According to the predictions of hydrodynamics, the rate of fluid mass flow through a semiper-

meable membrane is inversely proportional to the thickness of the membrane,13;33 making atom-

ically thin materials advantageous for filtration purposes. A balance must be struck between the

percentage of solute exclusion and the amount of fluid throughput desired for a given application.

If the nanopore is too large, both the solute and solvent may pass freely through the nanopore. In

the other extreme, if the nanopore is too small neither the solute or solvent may pass through the

nanopore, and very little to no purified solvent can be obtained.10;25

Water desalination is one of the most important applications of nanoporous membranes.39;50

However, in modern desalination plants it is difficult to maintain a high level of salt exclusion while

still retaining a high production rate of water.14;19 Despite the worldwide interest in developing thin

semipermeable membrane technologies for the purposes of desalinating seawater as well as other

applications, room remains for making significant contributions through the use of models of fluid

flow through nanoscopic channels and pores.

There are two primary issues pertinent for simulating and modeling nonequilibrium mass

transport through nanopores. The first pertains to relevant time and length scales. Results from

continuum hydrodynamics start to break down for fluid flow through small nanochannels with

widths on the order of several molecular diameters.53 This is not surprising because a continuum

description does not apply to the limiting case where single fluid molecules or particles occupy a

nanochannel. Continuum theories require mild oscillations in quantities such as the density and

pressure. On the microscopic scale this will not be the case for fluids near a membrane. Describing

both continuum-like fluid properties and nanoscopic dynamics is therefore beyond the scope of

continuum theory, but well suited to molecular dynamics simulations. In these simulations the

fluid is modeled as a collection of discrete particles, whose motion is propagated according to the
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numerical integration of Newton’s equations of motion.18

The second issue pertains to details of simulating a fluid flow. Flow of a fluid is a nonequi-

librium process. The fluid has a net mass transport in a given direction because of some type of

gradient. This gradient could be in the density, pressure, temperature, or chemical potential. Main-

taining fluid flow in molecular dynamics simulations is nontrivial. In the case of a fluid flowing

through a membrane, fluid collisions with the membrane dissipate momentum from the fluid. In

order to maintain fluid transport, an external driving force must be applied. Applying an external

driving force to the simulation requires the use of a thermostat to act as a heat bath.15 However, it is

unclear how equilibrium-thermostats interact with out-of-equilibrium driving forces in molecular

dynamics simulations.5

We have developed a methodology for simulating nonequilibrium flow through a semiper-

meable membrane using Gauss’s principle of least constraint (Chapter 3). We have computed the

flow of a Lennard-Jones fluid through a pipe-like region. Our results show that the behavior of the

fluid agrees well with that predicted by from continuum hydrodynamics13;31 and with expectations

for velocity distributions from statistical mechanics.34

1.1 Nonequilbrium Fluid Flow

Motivated by applications to water desalination, we will first discuss the basic principles of

reverse osmosis. This discussion will further motivate the role of membrane geometry and surface

properties. We will also discuss current simulation methodology and the necessity of developing

an alternative method for maintaining nonequilibrium fluid flow in simulations.

1.1.1 Reverse Osmosis With Semipermeable Membranes

The desalination of saltwater requires isolation of water from a source of varying salinity,

typically seawater or coastal ground water, the latter of which is also termed brackish water.19;24;29

The semipermeable membrane ideally allows passage of water molecules while restricting passage

of salt ions such as Ca2+,Mg2+,K+ based on solvated ion size.19;24 The problem therefore remains
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to somehow force the water to leave the side of the membrane with a high concentration of salt

ions, typically called the feed source, to the other side where pure water can be obtained.

As an example, consider a saltwater feed source on one side of a semipermeable membrane,

with a pure water solution on the other side (Figure 1.1). The unequal ion concentrations on the

two sides of the membrane cause a gradient in the chemical potential of the solvent, water, between

the two sides. The entropy due to mixing of the salt ions with water lowers the chemical potential

on the feed-source side of the membrane.1;34

When a pressure is applied to the feed source side of the membrane (Figure 1.1), the chemical

potential is raised on this side of the membrane. The pressure at which the chemical potentials for

each side of the membrane are equal is known as the osmotic pressure.19 If the applied pressure is

equal to the osmotic pressure, no water will flow and the system is at equilibrium with no net flow

of water through the membrane in either direction. For pressures above the osmotic pressure, the

chemical potential of the feed source reservoir is larger than the pure water reservoir. Again the

system moves to minimize the chemical potential difference, but in the case of an applied pressure,

water flows through the semipermeable membrane from the feed source solution to the pure water

side. This process is known as reverse osmosis, and can be used to isolate water from a source of

salt solution.12;19;21;24

The higher the salt concentration, the higher the osmotic pressure required to achieve reverse

osmosis.19;24 The pressure required to achieve reverse osmosis depends on the water feed source.

Seawater sources typically require applied pressures of 55 − 65bar, and brackish water sources

require pressures of 10 − 15bar.19

One can use thermodynamic arguments to estimate the theoretical minimum cost in energy

for water desalination. Equating the chemical potentials of the solvent on both sides of Figure

1.1 leads to the van’t Hoff equation for the osmotic pressure of an ideal solution.48 The osmotic

pressure, Π, for an ideal solution is

Π = νMRT (1.1)
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where ν is the van’t Hoff factor, which for NaCl is ≈2, M is the concentration in moles of solute

per liter of solvent, R is the ideal gas constant, and T is the temperature. For a salt solution

concentration of 35 g/L, the osmotic pressure is approximately 30 bar. Provided the work is

done at constant pressure and the van’t Hoff equation holds throughout, the cost for desalination

is approximately 1 kWh/m3 of water. Desalination plants using reverse osmosis reach efficiencies

around 7 kWh/m3.19∗ Assuming an average cost of electricity of 15 ¢/kWh, and assuming that an

average family of four uses 1.5 m3 of water per day, in a year the ideal solution estimated cost is

approximately $700, compared to current desalination plant cost of nearly $5, 000.

Hagen-Poiseuille’s law from continuum hydrodynamics predicts that the volumetric flow

rate of water through a pipe scales linearly with the pressure and inversely with the membrane

thickness.3;33 Importantly, this means that the thinner the membrane, the smaller the required ap-

plied pressure to achieve a given volumetric flow rate. Therefore, we are primarily interested in

atomically thin membranes. Thin membranes are particularly interesting because their degree of

hydrophobicity can be easily altered, as we will discuss next.

∗ This cost is taken for the highest salinity data pertaining to seawater feed sources.19
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Applied Pressure

Semipermeable 

   Membrane

Water Flow

Reverse Osmosis

feed source-saltwater freshwater

Figure 1.1: Reverse osmosis. To desalinate water, a nanoporous semipermeable membrane may
be used to restrict passage of the solute thereby allowing purification of the fluid. The entropy
of mixing salt ions with water lowers the chemical potential.1;34 The feed source with the higher
concentration of salt ions therefore has a lower chemical potential than the side with predominantly
pure water. When a pressure is applied to the feed saltwater solution, the chemical potential of the
salt solution increases. The pressure at which the chemical potentials for the two solutions on each
side of the membrane are equal is termed the osmotic pressure.19 For applied pressures greater than
the osmotic pressure, water flows from the high salinity side to the low salinity side, as required for
water purification purposes. This process is known as reverse osmosis.19;24 The figure was adopted
from Reference 19.
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1.1.2 Simulating Fluid Passage

Nanofluidic flow through nanopores is in a regime between the macroscopic (& µm) and

the microscopic (.nm).42 Continuum theories applicable on the macroscopic length scale, such

as the Navier-Stokes equations, require that fluctuations in density and pressure be mild, and can

therefore not be expected to hold on atomic length scales.6 We present a methodology capable of

describing fluid in both the atomistic and macroscopic regimes (Figure 1.2).27;35;54

ti
m

e 
sc

al
e

length scale
nm μm

p
s

n
s

μ
s

Macroscopic

Atomistic 

Mesoscopic

molecular 

dynamics

continuum 

theories

?

Methodology

Figure 1.2: Fluid dynamic models for various time and length scales. Continuum theories can be
applied on macroscopic length scales on the order of a micrometer. Due to current computational
limitations, atomistic simulations can be applied to system sizes with a length scale on the order of
a nanometer. Macroscopic continuum theories require mildly varying densities and therefore are
not applicable to systems on the atomistic length scale. We will develop an atomistic methodology
that, given large enough length scales, will give results commensurate with continuum theories.

While linear response theories can connect calculations in equilibrium simulations to trans-

port phenomena close to equilibrium,61 in practice they average poorly for water passage when

pores are on the order of a nanometer. Thus, to simulate fluid flow in these systems, one needs
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an appropriate methodology away from equilibrium. In a typical molecular dynamics simulation,

one solves Newton’s equation of motion at fixed energy, volume, and number of particles.18 This

connects to the microcanonical ensemble in statistical mechanics.34 To perform simulations at

constant temperature, one has to couple the microscopic system to a heat bath.15 While there are

several different ways to do this, one can show that any reasonable protocol generates the canon-

ical distribution at equilibrium. An external force must drive a system away from equilibrium.

In addition, to achieve a steady state, one must also dissipate energy. The way that heat baths,

or thermostats, couple to a system away from equilibrium is poorly understood. Naı̈ve applica-

tions of the equilibrium thermostats, for example, give rise to a number of erroneous and spurious

behaviors.5;16

In molecular dynamics simulations an external force is used to drive the system and maintain

fluid flow. One of the most common methods used for inducing flow of a fluid through a nanochan-

nel uses a piston placed on one side of the simulation box (Figure 1.3A).11;51 The piston is treated

as a rigid wall of particles impenetrable to fluid particles. A constant force is applied to the piston

wall which thereby exerts a force onto the fluid. The fluid will exert a force back on the piston

due to interatomic interactions between the fluid particles and the particles composing the piston

wall. As long as the force applied to the piston is large enough, the piston compresses the fluid and

moves towards the center of the simulation box by forcing fluid particles through the membrane.

The compressing piston has the effect of creating a pressure gradient across the membrane, thereby

driving flow of the fluid particles from one side of the membrane to the other.
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P
f
ext

(A) Piston Method  (B) Pump Method

Figure 1.3: Piston and pump methods for simulation of nonequilibrium fluid flow through a
nanopore. (A) A piston composed of a wall of particles is placed on one end of the simulation
box. A constant pressure, P, is applied to the rigid piston wall which thereby exerts a force on
the fluid and pressure gradient across the membrane. The fluid flows through the membrane until
the piston depletes the reservoir of fluid particles. The simulation is nonperiodic for the dimension
in the direction of fluid flow. (B) A pump region is defined away from the membrane. An exter-
nal force, fext, is applied to particles occupying the pump region that drives fluid flow through the
membrane.

The piston method, while it seems to relatively work well in practice,11;51 suffers from the

deficit that it cannot be used to continually collect data because of the nonperiodicity in the direc-

tion of flow. For long enough simulation times, the piston will eventually reach the membrane,

i.e. the fluid reservoir on the high pressure side of the membrane will eventually be depleted. The

volume of fluid on the high pressure side of the simulation changes throughout the course of the
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simulation. As a steady-state flow of fluid particles develops, fluid velocity streamlines develop

near the entrance and exit of the nanochannel. For large enough fluid flow, the fluid velocity stream-

lines can extend well into the fluid reservoirs on either side of the nanochannel (see e.g. Figure

3.4). As the size of the fluid reservoir decreases, the piston will begin to enter the volume occupied

by these velocity streamlines, and could affect passage dynamics in an uncontrolled manner.

Another common method used to create a steady-state nonequilibrium fluid flow defines

a pump region, typically defined to be near the edge of one end of the simulation box.28;49;50;62

Particles occupying the pump region are subjected to an additional constant force (Figure 1.3B).

This method will be referred to as the “pump” method. We will compare simulations using the

pump method to the nonequilibrium method developed in chapter 3. The pump method, in contrast

to the piston method discussed above, allows for periodic boundaries in all dimensions and avoids

the complication of a decreasing fluid reservoir volume in the piston simulations.

Particles entering or exiting the pump region experience a discontinuity in potential due

to the external force added when particles occupy the pump region. Near the pump region, this

means that particle motion is not time-reversible. However, if the pump region is far from the

nanochannel, it is reasonable to assume that this is inconsequential to fluid behavior inside and

near the channel, and that a steady-state local equilibrium can be assumed away from the pump

region.

One advantage of the pump method is that it allows for periodic boundaries in all dimensions,

in contrast to the piston method. However, fluid flow inside the channel is not totally independent

of the pump region size.28 One must prescribe the width of the region and its distance away from

the membrane. The method that we will develop in chapter 3 avoids prescribing any artificial

regions.

In Chapter 3, we develop a methodology for simulating nonequilibrium steady states based

on microscopic equations of motion. We will include a constraint on the total flow of the fluid into

the equations of motion using Gauss’s principle of least constraint. We will compare results from

our Gauss method with those of the pump method for pipe-like simulations. Importantly, we will
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show that both methods give results commensurate with that expected from continuum predictions

while maintaining velocity distributions from statistical mechanics. Our method will simulate

nonequilibrium fluid flow with minimal parameter input. Local velocity profiles will develop in

response to the fluid-membrane interactions and the pipe-like geometry. This will allow for further

exploration of fluid flow through nanoscopic channels as a function of fluid-surface interactions.

Future studies will be able to easily explore the role of membrane functionalization or surfaces

with varying hydrophobicity.

1.2 Equilibrium Studies of Surface Hydrophobicity

Surface hydrophobicty as it applies to semipermeable membrane applications remains to be

investigated. Changing the hydrophobicity of a surface has additional applications ranging from

electronic displays to so-called “lab-on-chips,” that move various materials around a circuit based

on alterations to the solid-liquid interface.37 Applications such microfluidic circuits and electronic

displays require surfaces capable of modifying liquid-surface hydrophobicity “on-command.”4;26;56

In chapter 2 we will focus on the liquid-solid interface between that of water and graphene. We

show that the degree of hydrophobicity changes dramatically upon electrostatic doping. The same

ideas and discussion should be applicable to a wide range of other systems.

1.2.1 Characterizing Hydrophobicity

Surface hydrophobicity is commonly altered using either chemical modifications23;45 or elec-

trowetting on dielectrics.36;38;52 Experiments and simulations typically measure surface hydropho-

bicity in terms of the contact angle.7;23;43 The contact angle, θ, is the angle at which the fluid

meets a solid surface (Figure 1.4).59 At equilibrium, the contact angle is described by Young’s

equation,44;59

cosθ =
γS V − γS L

γLV
(1.2)
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where γS V , γS L, γLV are the solid-vapor, solid-liquid, and liquid-vapor surface tensions respectively.

The various surface tensions correspond to the energy required to alter the surface area between

the two corresponding phases. The liquid-solid and solid-gas surface tensions and thereby the

contact angle change upon alteration of the solid surface properties. Fluid contact angles greater

than 90 degrees are considered hydrophobic. Contact angles greater than 120 degrees are termed

superhydrophobic, and anything less than 90 degrees is considered nonhydrophobic or wetting.32;55

θ

γ
liquid-vapor

γ
liquid-solid

γ
solid-vapor

Figure 1.4: Definition of the contact angle, θ, to measure hydrophobicity. The contact angle is
the angle at which the fluid meets the solid surface. The contact angle is a function of the surface
tensions γS V , γS L, γLV , the solid-vapor, solid-liquid, and liquid-vapor surface tensions respectively.
At equilibrium, the contact angle is described by Young’s equation, Equation (1.2).

The surface tensions can be thought of as quantifying the intermolecular interactions between

the various phases. If the solid-liquid interactions are modified such that γS L is minimized, the

right-hand side of Young’s equation is maximized, and cosθ is large (θ approaches a minimum).

In this situation, the energy penalty for the fluid droplet to spread is minimized and the fluid

disperses over the surface of the solid. In the other extreme, if the solid-liquid interactions become

unfavorable and γS L becomes large, the right-hand side of Young’s equation is minimized, and θ



13

becomes large. In this case the fluid droplet becomes extremely hydrophobic and avoids contact

with the solid surface.

1.2.2 Methods of Modifying Surface Hydrophobicity

As mentioned above, the extent of fluid hydrophobicity on a surface is intimately deter-

mined by the type and magnitude of the interactions between a solid and the fluid.9 As we will

discuss, the hydrophobicity of a solid surface is not determined only by those interactions near

a solid-liquid interface, but is instead a collective effect (Chapter 2). Two primary methods for

altering the hydrophobicity of a liquid-solid interface are through chemical modification23;45 and

electrowetting.7;22;36;52;56

Chemical functionalization has been shown to change the hydrophobicity of surfaces dramat-

ically.23;46;47 Godawat et al. studied the wetting properties of self-assembled alkane-thiol monolay-

ers functionalized using a variety of polar and nonpolar functional groups. The contact angle varies

over a wide range depending on the surface modification (Figure 1.5). As expected from physical

intuition, the polar functional groups caused water to spread out over the surface of the monolayer.

As discussed above, if the liquid-solid surface tension is minimized, the fluid will spread out over

the solid surface. In this case, the favorable Coulomb interactions between the polar head group of

the solid layer and water lower the surface tension and decrease hydrophobicity. Similarly, nonpo-

lar functional groups cause water to minimize its surface area nearest the monolayer, and form a

water droplet due to the lack of favorable interactions with the surface.
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Figure 1.5: Altering hydrophobicity of an alkane-thiol surface via chemical modification. The con-
tact angle, which quantifies the degree of hydrophobicity, from simulations (θMD) and experiments
(θexpt) are compared. The polar functional groups cause water to wet the solid surface. Nonpolar
functionalization of the surface causes water to minimize its surface area on the solid, causing the
water to “bunch up”, and form a droplet. Figure from Reference 23. Molecular dynamics simu-
lation and experimental data are taken from References 46 and 47 respectively. The open circles
are for droplets with a diameter of ≈ 5Å, and the filled circles are for droplets in the macroscopic
limit.23

While the hydrophobicity of a surface can be altered dramatically using chemical function-

alization, it suffers from the limitation that once the surface is prepared it is not easily altered

thereafter. Additionally, the degree of hydrophobicity is limited by the types of chemistry possible

at the interface, i.e. there are only so many types of functional groups that can be added to a given

surface, and therefore only so many different levels of hydrophobicity obtainable. Electrowet-
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ting, whereby an applied electric field induces changes in wetting properties, excels at achieving a

greater tunability of hydrophobic character.36–38

In chapter 2 we present a method whereby we take advantage of the electronic density of

states for graphene. Applying a voltage to the two-dimensional lattice of carbon atoms places an

excess amount of negative (n-doped) or positive (p-doped) charge on the carbon atoms. We show

that the contact angle and extent of hydrophobicity for water on graphene changes dramatically

upon electrical doping. The results are shown to be consistent with a modified version of Young’s

equation describing electrowetting.

1.3 Organization of the Thesis

Chapter 2 presents the hydrophobicity of graphene with applied electrostatic voltage. Elec-

trodoping graphene is a tunable means to alter the wetting properties of the graphene surface. The

wetting contact angles for water droplets on monolayer graphene were calculated using molecu-

lar dynamics under various applied voltages between ±1/3 volt. Using the low-energy and low-

temperature limits for the density of electronic states in monolayer graphene, excess discrete partial

charge was placed on the carbon atom centers. The contact angle of the water droplet on monolayer

graphene follows closely a modified Young-Lippmann equation that describes the contact angle of

a droplet on a surface in an applied electric field. Our simulations agree with our prediction that

the contact angle of water on graphene scales quartically with the voltage.

In chapter 3 a nonequilibrium method of simulating fluid flow through a nanopore is pre-

sented. Using Gauss’s principle of least constraint, the total flow of a fluid was held constant

throughout molecular dynamics simulations of fluid passage through a channel. Using the pro-

posed method, a fluid and channel system modeled with Lennard-Jones particles was studied for

two pipe-like configurations. We found that the developed method gives similar results to those

observed for a pump method commonly used in the literature,28;49;50;62 whereby an additive force

is applied to fluid particles near the edge of the simulation box. Both simulation methods give

results commensurate with Hagen-Poiseuille’s law for the fluid velocity profile and maintain the
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Maxwell-Boltzmann distribution of velocities.
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Chapter 2

Tunable Surface Hydrophobicity

2.1 The Tunable Hydrophobic Effect on Electrically Doped Graphene

Using molecular dynamics simulations, we study the hydrophobic effect on electrically

doped single layer graphene. With doping levels measured in volts, large changes in contact angle

occur for modest voltages applied to the sheet. The effect can be understood as a renormalization

of the surface tension between graphene and water in the presence of an electric field generated

by the dopant charge, a collective effect termed electrowetting. Because the electronic density

of states scales linearly with energy in the vicinity of the Fermi energy, the cosine of the contact

angle scales quartically with the applied voltage rather than quadratically, as it would for a two-

dimensional metal or in multiple layer graphene. While electrowetting explains the phenomenon,

it does not account for the slight asymmetry observed in the hydrophobic response between n- and

p-doping.

The contents of this chapter have been adapted from the paper titled “The Tunable Hydropho-

bic Effect on Electrically Doped Graphene”, published in January 2014 in the Journal of Physical

Chemistry B.50 Additional simulation data not included in the original publication is provided in

the appendix to this section.

2.1.1 Introduction

Graphene, an allotrope of carbon that is one atom thick, is a material with high mechanical

strength24 and many novel electronic properties that emerge from the dispersion relationship of



23

electrons near the Fermi energy7;11;47. These properties can be tuned by doping the material away

from the Fermi level by adding charge carriers, electrons or holes, either chemically or electro-

statically (Figure 2.1).3;4;18;40;43 Recent experiments using chemical doping21;41;51;67 have explored

energies on the order of 1 eV above and below the Fermi energy, corresponding to excess carrier

densities on the order of 1012 − 1013cm−2.67 Even larger densities, ≈ 1014cm−2, have been reported

for electrostatically doped graphene on insulating substrates37.

While the lion’s share of work to date has focused on the optical and transport properties of

doped graphene, we show that electronic doping changes the material’s hydrophobicity in a tunable

manner. Because a pristine graphene sheet should be hydrophobic23;53;57, these results may have

impact on applications that use nanoporous graphene as a semipermeable membrane for liquids

and gases.10;35

The fidelity of a semipermeable membrane is rooted in intermolecular interactions, both lo-

cal and collective, between the membrane and the fluid. Recent work by Baker et al. have shown

that hydrophobicity at the air-water interface is an interplay between local hydrogen bonding inter-

actions and collective capillary wave motions1. In applications of single-walled carbon nanotubes

to water desalination, the throughput and rejection ratio is a strong function of both the specific

molecular interactions that exclude salt ions and the collective motion of ”single-file” water in

the tube.36 Understanding how local and collective molecular motions control hydrophobicity and

aqueous transport, particularly at charged interfaces and in confined environments, is a topic of

timely and fundamental importance.



24

p-doped n-dopedneutral

(A)
0V +V-V

(B)

E
s
h

e
e

t 
 /
  
V

Å
-1

V / mV

  
n
  
/ 
 e

 n
m

-2

−400 0 200 400
−0.2

−0.1

0

0.1

0.2

−200

E
sheet

Figure 2.1: Neutral single layer graphene is a semimetal, where there is no energy gap between
the filled valence bands and empty conduction bands at the high symmetry points K,K′. (A) The
electronic dispersion relationship in the vicinity of the Fermi energy is a cone-shaped function of
kx, ky wavevectors. Emptying and filling the electron population with a negative, zero, and positive
applied voltage. (B) The electric field magnitude of an infinite uniformly charged sheet, Esheet, is
proportional to the excess charge density, n, as a function of applied voltage. The inset shows the
graphene layer (gray rectangle), with the electric field lines normal to the sheet.

Doping in experiments can be modeled by fixing the electronic chemical potential of graphene

relative to the Fermi energy. The excess chemical potential is eV , where e is the (positive) funda-

mental charge and V is the voltage. Positive voltages correspond to additional electrons (n-doping)

and negative voltages correspond to additional holes (p-doping). A drop of liquid water placed on

a doped graphene sheet experiences molecular and collective interactions. At the molecular level,

the excess carriers on the graphene surface are exposed and can allow hydrogen bonds between the

carbon atoms and the water molecules. But the excess charge generates an electric field that acts

collectively and polarizes the water leading to a phenomenon called electrowetting. Both effects

can profoundly change the wetting properties of the surface.8;26;27

The measure of a surface’s hydrophobicity that we employ is the wetting contact angle be-

tween the droplet’s edge and the solid surface, θ, first suggested by Young66 and recently shown to
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be a semiquantitative measure of hydrophobicity in nanoscale molecular dynamics simulations27.

A contact angle greater than 90 degrees indicates that the surface is hydrophobic, while com-

plete wetting corresponds to a contact angle of zero (Figure 2.2A). The Helmholtz free energy

of a droplet on a surface is a function of the contact angle and three surface tensions.55;59 In the

absence of an applied electric field, Young’s equation balances the various surface tensions at equi-

librium, and yields for the contact angle, cosθ =
γS V−γS L
γLV

, where γS V , γS L,γLV are the surface-vapor,

surface-liquid, and liquid-vapor surface tensions, respectively. In the presence of an applied elec-

tric field, the free energy acquires an additional term that describes the reversible work associated

with applying a field to the liquid;15;60 Young’s equation becomes the Young-Lippmann equation,

but the form of it depends on the details of the experiment or simulation. As we will show, the

field-dependent term has the effect of renormalizing γS L, thus making the contact angle a strongly

monotonically decreasing function of the voltage, V . The contact angle in our simulations varies

markedly with respect to voltages that are routine in experiments.

If one can tune the contact angle by tens of degrees then electrowetting has applications in

microfluidic biological sensors56;62, adjustable optical lenses6 and electronic paper.30 One experi-

mental method to control wetting is through electrowetting on a dielectric, EWOD, where a liquid

drop rests on top of a dielectric layer.44–46;57. The droplet and the dielectric layer are connected in

series between two electrodes held at a fixed voltage. For water droplets without a dielectric layer

present, the presence of an electrode in the droplet limits the voltage to the electrolysis threshold

of water at ≈ 1.24 V .39 The dielectric blocks current and prevents electrolysis. In practice, EWOD

experiments with water require very large voltages, on the order of tens or hundreds of volts to

achieve appreciable contact angle changes.38;57;58 In our study, the water droplet rests directly on

single layer graphene. We find changes in the contact angle for water on graphene that are on the

order of 15 degrees, but with voltages over a factor of three less than water’s oxidation potential.

The natural hydrophobicity of graphene provides a liquid-vapor interface that is both hydrophobic

and insulating. It is not breached by the application of a field, and in many ways plays the role of

the insulating dielectric layer in EWOD experiments.
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2.1.2 Model and Theory

We compute the contact angle for water on a doped graphene sheet using molecular dynamics

simulations with the LAMMPS package,52 modified to properly compute forces in a non-neutral,

nonperiodic simulation, as discussed below.2 All simulations were performed with a fixed number

of particles, volume, and energy (NVE) for average temperatures of 300 K. All reported results are

simulations of 2000 water molecules, corresponding to a droplet roughly 6 nm in diameter. We did

not observe any qualitative changes in the contact angles for simulations with between 2000 and

17,600 molecules. Thirty-two trajectories were collected and analyzed for each voltage studied.

Each trajectory began with water molecules arranged in a box-like geometry that was equilibrated

for 350 ps using NVE molecular dynamics prior to data collection for 1 ns. The simulations model

doped graphene by placing a partial charge on the carbon atoms so that the sheet has the same mean

charge density as it would at fixed chemical potential. This is equivalent to introducing a “quasi

Fermi level,” which is standard in semiconductor physics.34 Scanning tunneling microscopy stud-

ies report that carrier density in graphene localizes at carbon atoms or along bonds between carbon

atoms,64 so this approximation should be reasonably faithful to the microscopic electronic config-

uration of doped graphene. Even when graphene is doped chemically, the excess charge carriers

tend to delocalize throughout the sheet.67 By fixing the partial charge on a carbon atom, we ig-

nore fluctuations in the charge density that would be present in the grand canonical ensemble at

fixed chemical potential. This approximation is justifiable because the electric field generated by

the droplet at the graphene surface is many orders of magnitude smaller than the smallest electric

fields used here.

We modeled the system using the SPC/E potential5 for water and a Lennard-Jones (LJ) po-

tential between the oxygen and carbon atoms, where the carbon-oxygen LJ parameters were cho-

sen to match experimental data on measured contact angles.61 Consistent with the high mechanical

strength of graphene, the carbon atoms were held fixed. Hydrogen bonding in the SPC/E potential

is a balance between the LJ oxygen-oxygen forces and the favorable electrostatic hydrogen-oxygen
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interaction. Excess charges on the carbon atoms do, in principle, allow for the same kind of hy-

drogen bond formation between oxygen and carbon as the SPC/E potential would describe. As the

magnitude of the carbon atom’s partial charge increases, the carbon atoms can disrupt the hydrogen

bond structure at the water surface. One could imagine that these effects might depend sensitively

on the location of the carbon partial charges, but placing the excess charge above or below the

sheet by ≈ 1Å, near where the π-electron density would peak in graphene, does not change our

results quantitatively. This result foreshadows a relatively weak contribution to the hydrophobic

effect from the molecular hydrogen bonding at the surface.

The appropriate boundary conditions for our simulation are periodic in the plane of the sheet,

which we take as the x and y axes, but nonperiodic in the direction normal to the sheet, here

taken to be the z-direction. The graphene sheet is centered at z = 0. This “slab” geometry is

typical in studies of interfacial phenomenon63 and can be challenging to simulate efficiently.2

Simulations of charged systems in the slab geometry must be done with care.2 For charged systems

that are periodic in all three dimensions, it is conventional to use Ewald sums with a counter charge

distributed uniformly in space, similar to the jellium model of the homogeneous electron gas. In

this case the background charge modifies the energy, but not the forces.2 In the Yeh-Berkowitz slab

summation method65 applied to a charged system, this is no longer true and the forces on charged

particles must be corrected.2 A vacuum layer sits between images in the nonperiodic direction and

the Ewald sum includes a correction to forces on charged particles so that there are no interactions

between replicas in this direction.2 We employ the EW3DC methodology as modified for a non-

neutral system, using a suitably designed geometry for the Ewald sum.2;65 Additional simulation

details appear in the Supporting Information.

2.1.3 Results and Discussion

The linear approximation for the low energy electronic dispersion relationship in graphene

is excellent for the voltage ranges explored here.13 The excess charge density on graphene at tem-
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perature T and voltage V is

n(V,T ) = −e
∫ ∞

0
dε f (ε,V,T )g(ε) (2.1)

where f is the Fermi occupation factor, f (ε,V,T ) = sign(V)
(
exp [{ε − e|V |}/kBT ] + 1

)−1 that ex-

ploits particle-hole symmetry. The energy, ε, is relative to the Fermi energy, V > 0 for electrons

(n-doping), V < 0 for holes (p-doping), and kB is the Boltzmann constant. g(ε) = 8π|ε |
(hvF )2 is the

density of states per unit area including spin and valley degeneracies.47 h is Planck’s constant

and vF = 106m/s is the Fermi velocity in graphene.47 The excess charge density per fundamental

charge varies over a range of ±2× 1013cm−2 for V between -500 and 500 mV, which is well within

the range accessible via chemical doping.67 Equation (2.1) can be expressed exactly in terms of

the polylog function. However, the zero-temperature approximation to n(V,T ) gives a very simple

form and shows that n(V, 0) ∝ V2. At T = 300 K, this approximation holds well for voltages

exceeding about 200 mV.

At distances from the sheet large enough that the lattice structure of graphene cannot be

resolved, continuum electrostatics predicts the electric field is directed along the surface normal

with a constant field strength of Esheet = n
2ε0

, where ε0 is the vacuum permittivity. Interestingly,

the electric field in our simulations shows that for distances from the sheet in the z-direction larger

than about 2 Å, the continuum electrostatic description is extremely accurate (Figure 2.2B). This

is significant because there is not appreciable water density near graphene for z less than 3 Å.

Computational feasibility limits these simulations to thousands of water molecules and nanosec-

onds of simulation time. Electrovaporization of nanodroplets on this length scale restricts the elec-

tric field to values of |Esheet| . 0.1 V/Å12;14. Voltages in the domain of -354 to 354 mV correspond

to a maximum |Esheet| of 0.085 V/Å and fall below this threshold. At these field strengths, far be-

low what water molecules exert on one another in bulk water,19 a polarizable water model is not

required31.
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Figure 2.2: (A) The droplet edge, extrapolated to the graphene sheet (gray rectangle), gives the
contact angle, θ. (B) The electric field above a charged graphene sheet from molecular dynamics
simulations of a charged system in the slab geometry. The electric field rapidly converges to that
of an infinite charged sheet, Esheet, in the vapor layer that intervenes between the water and the
graphene sheet.

The water density in cylindrical coordinates is ρ(r, z) =
∑

l
1

2πr 〈δ(r − rl)δ(z − zl)〉, where δ

is the Dirac delta function, rl is the radius with respect to the droplet center of mass and zl is the

z coordinate of oxygen atom l. The brackets denote an average over all configurations sampled.

The density was evaluated by histogramming the position data in 1 Å intervals for both r and z.

We defined the droplet edge as the values for r and z at which ρ(r, z) = ρB/2 where ρB is the bulk

density of water.61 The droplet edges were determined by two-dimensional linear interpolation of

the computed ρ(r, z) and are shown in Figure 2.3.

Obtaining the contact angle from the droplet edge contours is a nonlinear fitting procedure

that is prone to uncertainty because one needs to retrieve the inverse tangent function near π/2. Our

method differs from others reported in the literature.8;15;61 We used a procedure chosen for both

its robustness and numerical stability that we gauged using the jackknife method on the contour

data.20 The chosen method involves both a linear regression and an extrapolation. Recognizing that

the droplet shapes are elliptical, we fit the droplet to the linear function R = aZ +b where R(r) = r2

and Z(z) = (z − z0)2. a, b are fit parameters determined by linear regression for fixed z0, and the
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parameters of best fit, a, b, and z0 simultaneously minimize χ2.54 The contact angle is related to the

slope of the contour extrapolated to z = 0, which yields tan(θ) = dz
dr

∣∣∣∣∣
z=0

=

√
az2

0+b
az0

. Fitting the edge

contours using a polynomial fit8 changes the value of the angles, but does not change their relative

difference observed over the voltage range studied. Contour data near the surface with z < 8Å

were excluded from the fit.61

Figure 2.3 displays the droplet contours for both n- and p-doped graphene as a function of

the voltage. The contact angles change by about 15 degrees for voltages in the range -354 to

354 mV (Figure 2.4A). Accompanying the change in angle, the droplet elongates in the direction

of the electric field, similar to the case of pure electrowetting on graphite, corresponding to an

external electric field applied to a neutral simulation.15 To compare the case of pure electrowetting

to electrically doped graphene, we repeated the simulations using neutral graphene in the slab

geometry with a constant electric field applied in the z-direction chosen to match Esheet at the

same voltage in Figure 2.3. The results are virtually identical (Supporting Information). This is

highly suggestive that the hydrophobic effect on electrically doped graphene is dominated by pure

electrowetting, an entirely collective effect.

To further examine this hypothesis, consider the Helmholtz free energy of a droplet, approx-

imated as a uniform isotropic dielectric box with base area AS L and height `, on a surface with a

uniform electric field applied to it. As the droplet polarizes in response to an applied electric field,

E, the internal energy of the entire system, including the electric field, decreases by an amount

proportional to E2. The free energy is

F = F0 + Φ, (2.2)

where F0 is the free energy (ignoring the Laplace pressure and the line tension61) in absence of

the field, Φ = −CE2AS L is the reversible work to polarize the droplet, and C is a constant that

accounts for the capacitance of the droplet. After constraining the total volume and temperature to

be constant, and using that dALV � cos(θ)dAS L,55 the differential Helmholtz free energy is

dF =
[
(γS L − CE2) − γS V + γLVcos(θ)

]
dAS L. (2.3)
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The two terms in parentheses comprise the effective surface tension between the liquid and the

surface. It is a strongly monotonically decreasing function of the field strength. As this surface

tension gets smaller and smaller relative to γS V , the droplet will minimize its free energy by wetting

the surface. Minimizing the free energy in Equation (2.3) yields the Young-Lippmann equation for

the contact angle,

cos(θ) = cos(θ0) +
C

γLV
E2, (2.4)

where θ0 is the contact angle in absence of the field. This is the appropriate Young-Lippmann equa-

tion for pure electrowetting in our configuration and describes how the electric field renormalizes

the surface-liquid surface tension.45

Local molecular interactions can also renormalize the surface tension. To judge their signifi-

cance we make a scaling argument. The electric field depends linearly on the charge density, which

in the zero temperature limit depends on the voltage squared, so that E ∝ V2 in graphene, or that

cos(θ) ∝ V4. The scaling relationship with respect to voltage for other materials, such as bilayer

graphene, is different because the density of states is different.49 Bilayer graphene is a two dimen-

sional gapless material with a quadratic energy dispersion relationship.13. The density of states is

independent of the energy, as in the case of a two dimensional metal. In bilayer graphene, cos(θ)

would be proportional to V2. For single layer graphene, the hydrophobicity is a strong function of

the voltage because the density of states is linear in the vicinity of the Fermi energy.

Figure 2.4B displays cos(θ) as a function of V4. Over the range of voltages studied, the scal-

ing argument given above matches the data well. The sign of the voltage determines the direction

of the field but not its magnitude. Naively, one would expect to see identical results for droplet

morphologies with voltages of equal magnitudes but opposite sign (Figure 2.3). The data show,

however, a small asymmetry between n- and p-doping.

We attribute the asymmetry in the contact angle between positive and negative applied volt-

ages to a difference in C for n- and p-doped graphene.8 The slopes for the cosine of the angle

scaling with V4 for n- and p-doped graphene are statistically different to within a 95% confidence
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interval. Because C depends on the static dielectric constant, which in turn depends strongly on

the orientational susceptibility of the molecular dipoles, one can understand the results as a differ-

ence in the orientational stiffness of how the molecules respond to an applied field. The density

in the z-direction, ρ(z) = 2π
∫

dr rρ(r, z), is not uniform for water against an interface, but instead

displays peaks as a function of z, similar to the pair-density correlation function in the bulk liq-

uid.61 The differences in molecular arrangements between n- and p-doped graphene will be most

pronounced at the graphene-water interface, or within the first effective water monolayer, which

we define as all z values below the first minimum in ρ(z), or 0 ≤ z ≤ 3 Å, akin to how one classifies

the first solvation shell in the bulk liquid.29 Because the free energy of the droplet is invariant to

rotation around the z-axis, the orientation of molecules about the z-axis should be irrelevant. We

thus characterize the arrangements of water molecules in the first monolayer using two direction

cosines of the water molecule relative to the z-axis that account for the C2V symmetry of water.

These quantities are the projection of the dipole moment and the hydrogen-hydrogen, HH, vector

along z (Figure 2.5A).

In Figure 2.5B, and C we compare the molecular orientations in the first water monolayer

between neutral and electrically doped graphene at the largest voltage magnitudes studied. The

molecular orientations are similar between the neutral and p-doped cases. The n-doped case dif-

fers the most. The carbon atoms of n-doped graphene attract hydrogen atoms in the first monolayer,

and the water dipole moment orients towards graphene (Figure 2.5B). The probability density for

the dipole moment projection shifts and broadens more strongly in n-doped graphene compared to

the neutral and p-doped cases, indicating that as the average orientation changes, fluctuations of

the dipole moment in the z-direction are more facile. For neutral and p-doped graphene the most

probable orientations are those with water in the plane of the graphene sheet (Figure 2.5C). But

for n-doped graphene there is little preference for the molecule to lie in the plane, and here too,

fluctuations occur easily about the molecular C2 axis.
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Figure 2.3: The droplet contour lines at half the bulk density of water depicting the liquid-vapor
interface for various applied voltages from simulation. The r dimension is taken with respect to
the droplet center of mass, and z = 0 is the location of the graphene plane. (A,B) Liquid-vapor
interface for positive and negative applied voltages. (C) Red and blue colors correspond to voltages
of equal magnitude voltages but opposite sign.
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Figure 2.4: (A) Contact angle as a function of applied voltage. Neutral graphene has the highest
contact angle, or most hydrophobic surface. Away from neutrality, the hydrophobicity decreases
rapidly with voltage. The dashed line is a guide for the eye. (B) Cosine of the contact angle as
a function of voltage. The modified Young-Lippmann equation predicts that cos (θ) ∝ V4 if the
electrowetting contributions dominate. The slopes for n- and p-doped graphene are statistically dif-
ferent to within 95% confidence using a statistical t-test. All error bars are one standard-deviation.

2.1.4 Conclusion

In this work, we presented simulations of the hydrophobic effect on electrically doped sin-

gle layer graphene. Our results show that, for voltages applied to the sheet about 1/3 of a volt in

magnitude, the contact angle changes by nearly 15 degrees for either n- or p-doping. Electrically

doped single layer graphene becomes significantly less hydrophobic. A number of phenomena in

liquid water, from the hydrophobic effect9 to electron transfer42 and vibrational dephasing,19;48

come from a competition between local and collective effects. Understanding these relationships

quantitatively can be very challenging. In the case studied here, we show that the hydrophobicity

of electronically doped graphene can be understood as pure electrowetting, an entirely collective

effect. We come to this conclusion by noting that the results for the contact angle are robust to
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variations in the placement of the charge on the carbon atoms, can be reproduced quantitatively by

removing the charge and in its place applying a constant electric field at the equivalent strength of

Esheet, as done in Reference 15, and can be explained using a thermodynamic theory of electrowet-

ting. While the phenomenon can be understood from a purely collective perspective, interfacial

molecular orientational responses may differentiate the slopes in Figure 2.4.

Many of single layer graphene’s novel properties emerge from the cone-shaped electronic

dispersion relationship near the Fermi energy (Figure 2.1A). The same is true here. The graphene

density of states implies that the cosine of the contact angle scales not like V2, as it would in a two

dimensional metal or in few-layer graphene, but instead like V4. We expect that this scaling should

be testable in experiments that compare doped bilayer and single layer graphene. The electric field

we consider is generated by surface charge. Unlike the typical EWOD experiment, electrowetting

on single layer graphene does not require an additional dielectric layer, nor does it require that

an electrode be placed in the droplet. We expect that these features, in addition to the extreme

sensitivity of the hydrophobic effect for voltages that are easily attainable in current experiments,

will enable many applications.

2.2 Appendix

2.2.1 Low Temperature Charge Density of Infinite Graphene Sheet

Treat the graphene monolayer as an infinite, uniformly charged sheet. The electric field

above an infinite sheet is28

Esheet(V,T ) =
n(V,T )

2ε0
(2.5)

where n, the excess charge density, is a function of applied potential V and temperature T , and ε0

is the permittivity of free space. The excess charge density can be calculated

n(V,T ) = −e
∫ ∞

0
dE f (E,V,T )g(E) (2.6)
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where g(E) is the density of electronic states as a function of energy. The Fermi distribution, f ,

can be written

f (E,V,T ) = sign(V)
1

exp [{E − e|V |} /kBT ] + 1
(2.7)

where kB is Boltzmann’s constant, e is the fundamental (positive) charge, and we have exploited

particle-hole symmetry. When V > 0, electrons are deposited onto the graphene and the monolayer

is n-doped. Similarly, when V < 0, electrons leave the graphene layer leaving excess positive

charge, and the monolayer is p-doped. In the low-temperature limit,

f (E,V,T → 0) = sign(V)Θ (e|V | − E) (2.8)

where the Heaviside theta function, Θ(x) = 1 for x ≥ 0, and 0 otherwise. Inserting the density of

electronic states, g(E) = 8π

(hv f )2 E,47 Equation 2.6 becomes

⇒ n(V,T → 0) = −e
∫ e|V |

0
dE sign(V)

8π(
hv f

)2 E (2.9)

= −e sign(V)
4(

hv f

)2 (eV)2. (2.10)

Finally, in the low temperature limit, for an infinite graphene sheet, the electric field is given by

Esheet(V,T → 0) = −sign(V)
2e (eV)2

ε0

(
hv f

)2 (2.11)

⇒ Esheet(V,T → 0) ∝ V2. (2.12)

Importantly, we note that the electric field is proportional to the square of the applied potential.

2.2.2 Additional Simulation Details

Our simulations used the particle-particle/particle-mesh method to numerically calculate the

Coulomb potential, with a real space cutoff rc = 20 Å.16;32 A reciprocal space mesh was chosen

with 32 × 32 × 75 points in the kx, ky and kz directions, respectively, with a screening parameter
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of 0.1253 Å−1.16 The angle and bond lengths of water were constrained using the SHAKE algo-

rithm.25 The particle equations of motion were numerically integrated using the Velocity-Verlet

algorithm17 with a timestep of 2 fs. Velocities were rescaled every 10 ps to maintain an average

temperature of 300 K.

The x and y dimensions were treated periodically for all graphene-water simulations. The z

dimension was treated nonperiodically using the slab summation procedure,65 with a total length

of 600 Å. The graphene layer spanned the entire simulation cell in the x and y directions which

both had lateral dimensions of 200 Å. A preequilibrated cubic bulk volume of 2000 SPC/E waters5

was used as the initial water configuration and was placed in the middle of the graphene sheet.61

The carbon-oxygen Lennard-Jones parameters of Reference 61, case 28, were chosen. Molecu-

lar dynamics simulations agree with the experimental contact angle for water on neutral graphene

when extrapolated to macroscopic droplets using these parameters.61 The graphene-water system

was equilibrated for 350 ps. Atomic positions were written every picosecond for a total of one

nanosecond.

2.2.3 Boundary Conditions and Error in Simulations

In the slab geometry one dimension is treated nonperiodically, which we take as the z dimen-

sion. In the language of Yeh and Berkowitz, we employ the slab summation “EW3DC” method,65

adopted for nonneutral simulations.2 The length of the z dimension includes a sufficient amount of

vacuum such that the interactions between slab images can be removed by correcting the forces on

charged particles.2;65 The force on the ith charged particle was corrected by including

Fi = −
4π
Ω

(Mz − Qtotzi) qiêz (2.13)

where Ω is the volume of the simulation box, Mz is the z component of the total dipole moment for

the simulation, Qtot is the total charge of the simulation, zi is the z coordinate, and qi is the charge

of particle i.2;65

It is informative to compare the magnitude of the electric field, E, of a charged simulation to



39

the electric field of a homogeneously charged infinite sheet, Esheet, at equivalent voltages (see main

text). Figure 2.6 shows the percent difference, ∆E =
√

E−Esheet
Esheet

× 100%. The simulation parameters

were chosen based on numerical accuracy and speed. We observe that ∆E is less than 2% for

z & 2 Å, the relevant region of the simulation occupied by water. ∆E is independent of the excess

charge magnitude, or non-neutrality of the system. The results presented in Figure 2.6 have a

negligible dependence on the x, y dimensions.
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Figure 2.6: The percent difference, ∆E, between the electric field in a charged simulation and
Esheet (see main text). Note that the percent error in the force is independent of the magnitude of
the applied voltage, and is determined by the simulation parameters used for numerical evaluation
of the Coulomb potential.

2.2.4 Contact Angles for Charged and Constant Electric Field Simulations

To assess molecular contributions to electrowetting, we performed constant electric field sim-

ulations. Instead of doping the carbon atoms with excess charge, a constant electric field, Esheet,

was applied normal to the graphene surface. The liquid-vapor interfaces are nearly indistinguish-

able for the charged and constant electric field simulations. Therefore, the contact angles for the
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charged and constant electric field simulations are identical (Figure 2.7).
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Figure 2.7: Contact angle as a function of applied voltage for the charged (blue) and constant
electric field (red) simulations. The contact angles are identical for the charged and constant elec-
tric field simulations. These results imply that there is little contribution to electrowetting from
molecular bonding with the discrete carbon lattice. The dashed lines are a guide for the eye.

2.2.5 Additional Physical Quantities

Oxygen, Hydrogen Density

The oxygen and hydrogen density calculated within a cylindrical subvolume of the droplet

is shown in Figure 2.8. The excess doping type is indicated to aid in thinking about the density

layering near the graphene. Both densities show very small changes for the voltage range studied.

The hydrogen density nearest the graphene layer is as physically expected. For n-doped graphene,

the hydrogen density is enhanced near the graphene layer, and similarly for p-doped graphene the

hydrogens move away from the graphene layer as compared to the neutral sheet case.
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Figure 2.8: (A) Oxygen and (B) hydrogen density for select voltages as a function of distance above
the graphene surface, z. Despite varying the voltage from nearly ±1/3 of a volt, there are very small
changes in the densities throughout our simulations. The excess doping type is indicated to aid in
thinking about the density layering near the graphene. The oxygen density is depleted nearest the
graphene layer for n-doped graphene, as expected from physical intuition. Similarly the hydrogen
density is enhanced nearest the graphene sheet for n-doped graphene. The peaks and valleys of the
density are labeled for illustrative purposes. This data was taken for a droplet subvolume defined
by water molecules with oxygen coordinates r ≤ 20Å.
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Hydrogen Bonding

Similar to the oxygen and hydrogen densities, the number of hydrogen bonds changes very

little in the range of applied voltages studied. The hydrogen bonds were found using the geometric

criterion, that sets stipulations on the distances.22 The geometric criterion defines hydrogen bond

as having distances R(O . . .O) ≤ 3.5Å, R(O . . .H) ≤ 2.6Å and the angle H − O . . .O ≤ 30o.

The average number of hydrogen bonds approaches ≈ 3.5 as expected for SPC/E water several

angstroms away from the graphene surface.
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Figure 2.9: Hydrogen bonds as a function of z using the geometric criteria for three voltages.
The graphene surface is located at z = 0. The number of hydrogen bonds is slightly depleted
for p-doped graphene. As shown in Figure 2.8, the oxygen density is slightly enhanced near p-
doped graphene, therefore leaving less oxygen atoms available for hydrogen bonding. Similarly,
the average number of hydrogen bonds is slightly enhanced for n-doped graphene. This data was
taken for a droplet subvolume defined by water molecules with oxygen coordinates r ≤ 20Å.

Water Orientation: Conditional Probability of OH Bonds

In order to determine the water orientation relative the graphene surface, the conditional

probability for orientation of both the OH bonds in water was calculated using
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P(u, u′|z) =
1
ρ(z)

N∑
i=1

〈δ
(
u − cosθ(1)

i

)
δ
(
u′ − cosθ(2)

i

)
〉 (2.14)

where ρ(z) is the water density, θ(1)
i is the angle of one of the OH bonds, and θ(2)

i is the second OH

bond of the ith water molecule.63 u, u′ = 1,0, or −1 and represent OH bonds pointing perpendicular

towards, parallel, and perpendicular away from the graphene layer respectively.

Figure 2.10 shows the conditional probability for OH bond orientations nearest the graphene

layer (z = 2.8Å) and near the first hydration shell (z = 3.2Å). The conditional probability for

p-doped graphene is qualitatively similar to the neutral case, where most of the probability lies in

the center where u = u′ � 0, corresponding to a water molecule lying in a plane parallel with the

graphene surface. The other areas of high probability correspond to the case where one of the OH

bonds is perpendicular oriented away from the graphene layer (u, u′ � 1) and consequently the

other OH bond is pointed slightly downwards toward the graphene layer.

Water molecules near neutral graphene are most likely to lie perpendicular to the graphene

layer with both OH bonds parallel the graphene surface, with the next most probable orientation

having one OH bond pointing towards the graphene layer. For the negative (positive) applied

potential, there is little (high) probabilty for observing an OH bond pointing towards the graphene

layer, as one would expect from intuition. As the graphene is n-doped, the hydrogen atoms reorient

so as to be nearer the graphene layer.



44

−
1

−
0
.50

0
.51

−
1

−
0
.50

0
.51

u

−
1

−
0
.5

0
0
.5

1
−
0
.5

0
0
.5

1
−
0
.5

0
0
.5

1

u

u
u

u

(z = 3.2Å) (z = 2.8Å)

-3
5
4
m
V

0
m
V

+
3
5
4
m
V

-3
5
4
m
V

0
m
V

+
3
5
4
m
V

Fi
gu

re
2.

10
:

O
H

bo
nd

or
ie

nt
at

io
n

co
nd

iti
on

al
pr

ob
ab

ili
ty

fo
r

th
e

ne
ut

ra
l

an
d

se
le

ct
ap

pl
ie

d
po

te
nt

ia
ls

.
(T

op
Pa

ne
l)

C
on

-
di

tio
na

l
pr

ob
ab

ili
ty

cl
os

e
to

th
e

fir
st

pe
ak

of
th

e
fir

st
hy

dr
at

io
n

sh
el

l,
z

=
3.

2Å
.

(B
ot

Pa
ne

l)
z

sl
ic

e
ne

ar
es

t
th

e
gr

ap
he

ne
m

on
ol

ay
er

,z
=

2.
8Å

.



45

2.2.6 Young’s Equation

Young’s equation describes the wetting contact angle, θ, for a droplet in contact with a sur-

face, and was originally formulated by Thomas Young in 1805.66 The tensions acting on a droplet

near the surface are illustrated in Figure 2.11. What follows is the so-called “local-derivation” of

the contact angle.55

Young’s equation is an equilibrium statement pertaining to the balance of the three surface

tensions, γS L, γLV , γS V corresponding to the solid-liquid, liquid-vapor, and solid-vapor surface

tensions respectively. The surface tensions have units of energy per unit area, and correspond to

the energy required to deform the droplet surface area.
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Figure 2.11: (A) Differential area and length changes used in the “local-derivation” of Young’s
equation for wetting. (B) Surface tensions on a droplet at the three-phase contact line. γS L, γLV , γS V

correspond to the solid-liquid, liquid-vapor, and solid-vapor surface tensions respectively. The
surface tension has units of energy per unit area, and describes the amount of energy required to
deform the surface area.

Consider that the contact angle, θ, undergoes a differential change to θ + dθ (Figure 2.11). If

the droplet has a large enough curvature, we may write the ratio of the infinitesimal area change as

δALV

δAS L
=cos (θ + δθ) ∼ cosθ (2.15)

⇒ δALV =δAS Lcosθ. (2.16)
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At constant volume and temperature, the differential of the Helmholtz free energy is

⇒ dF0 =γS LdAS L − γS VdAS L + γLVdALV (2.17)

=γS LdAS L − γS VdAS L + cosθγLVdAS L (2.18)

= (γS L − γS V + cosθγLV) dAS L. (2.19)

At equilibrium

⇒ dF =0 = (γS L − γS V + cosθγLV) (2.20)

⇒ cosθ =
γS V − γS L

γLV
“Young’s Equation”. (2.21)

Next we will modify Young’s equation in the presence of an electric field.

2.2.7 Young’s Equation In an Electric Field

Young’s equation, Equation 2.21, must be modified if an electric field is applied. Assume

for simplicity that the droplet can be approximated by a rectangular volume (Figure 2.12).

I

III

I

II

II

E

E
0

E
0

E III

Figure 2.12: Volume of water in an externally applied electric field, E0. The screened electric
field strength is E. The droplet (Left) for simplification can be considered as a rectangular volume
(Right), thereby ignoring any effects due to the droplet morphology. In this picture, how the
external field is created is immaterial to the problem, that is, it does not matter if the electric field
is created inside a parallel plate capacitor or some other configuration. Region I corresponds to
vacuum, with other regions defined accordingly.
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A boundary condition on the displacement field perpendicular the interface between regions I and

II is written as (Reference 28, Equation 4.26)

D⊥,II − D⊥,I =ρ f (2.22)

where ρ f is the free charge at the interface. Since there is no free charge in the case of pure water

(no ions), ρ f = 0,

D⊥,II =D⊥,I (2.23)

εE⊥,II =ε0E0 (2.24)

E⊥,II =
ε0

ε
E0 =

1
εr

E0 (2.25)

where εr = ε
ε0

is the dielectric constant, ε is the permittivity of water, and the last line assumed that

water acts as a linear dielectric, D = εE. The Helmholtz free energy for the droplets is

F = F0 + Uelectrostatic (2.26)

where Uelectrostatic is given by Equation (2.40), and F0 is the non-electrostatic contributions to the

Helmholtz free energy,

F0 =U − TS (2.27)

⇒ dF0 =
∑

l=S L,LV,S V

γldAl. (2.28)

Write the energy for composing the dielectric material in an external field (Reference 33, Equation

4.83)

Uelectrostatic =

∫
all space

dx Φ(x)ρ(x) (2.29)

where Φ is the spatial-dependent potential, and ρ is the charge density. We choose an ensemble

where the charges fluctuate while the potential stays fixed. Because we only have bound charge,

write the variation of the energy

δUelectrostatic =

∫
all space

dx Φ(x)δρB(x) =

∫
all space

dx Φ(x) (−∇ · δP) (2.30)
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where P is the polarization of the dielectric. Make use of

∇ · (ΦδP) =Φ∇ · (δP) + δP · (∇Φ) (2.31)

⇒ Φ∇ · δP =∇ · ΦδP − δP · ∇Φ = E · δP + ∇ · (ΦδP) . (2.32)

Now

δUelectrostatic = −

∫
all space

dx (E · δP) −
∫

all space
dx (∇ · (ΦδP)) . (2.33)

The last term vanishes, as the integral is over all space. Using the divergence theorem∫
all space

dx (∇ · (ΦδP)) =

∫
dA n · (ΦδP) = 0. (2.34)

In linear response P = αE, where α is the (isotropic) polarizability. The integral over all space

reduces to the region of space occupied by the droplet,

δUelectrostatic = −

∫
drop

dx E · δP (2.35)

= − α

∫
drop

dx E · δE (2.36)

= −
α

2
δ

∫
drop

E2. (2.37)

=⇒ Uelectrostatic = −
α

2
E2Vdrop (2.38)

= −
α

2
E2AS LH (2.39)

where AS L and H is the area of a solid-liquid surface with height H. Now substitute (cf. Equation

2.25) E = ε0
ε

E0 = 1
εr

E0, where E0 is the external field produced by the graphene layer, which we

approximate as a parallel plate capacitor, and the work of polarizing the dielectric media reads

Uelectrostatic = −
α

2ε2
r

E2
0AS LH. (2.40)

Now the Helmholtz free energy is,

F =γS LAS L + γLV ALV + γS V AS V −
α

2
E2AS LH. (2.41)
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The preceding equation is analogous to Young’s equation in the absence of a field, except for the

last term which accounts for the polarization of the water due to the applied electric field. This

last term renormalizes the surface tension between water and grapheme and is responsible for the

tunable hydrophobic effect. Following similarly to the derivation of Young’s Equation 2.21, at

equilibrium

dF =γS LdAS L + γLVdALV + γS VdAS V −
α

2
E2dAS LH (2.42)

=

[
γS L + cosθγLV − γS V −

αH
2

E2
]

dAS L = 0 (2.43)

⇒ cosθ =
γS L − γS V

γLV
−
αH

2γLV
E2 = cosθ0 + C E2 (2.44)

where cosθ0 is Young’s equation in the absence of an electric field (Equation 2.21), and C = −αH
2γLV

has units of capacitance. Since the electric field is proportional to the square of the potential (cf.

§2.2.1),

cosθ =cosθ0 + C ′V4 (2.45)

where C ′ = −sign(V) 2e(eV)2

ε0(hv f )2 C = sign(V) eαH(eV)2

ε0γLV(hv f )2 , having used Equation (2.11). For graphene,

according to Equation 2.45, the cosine of the contact angle will scale as the fourth power of the

applied potential.
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[36] J. Köfinger, G. Hummer, and C. Dellago. Single-file water in nanopores. Phys. Chem. Chem.
Phys., 13(34):15403–15417, 2011.

[37] C. N. Lau, W. Bao, and J. Velasco. Properties of suspended graphene membranes. Mater.
Today, 15(6):238–245, 2012.

[38] C.-P. Lee, B.-Y. Fang, and Z.-H. Wei. Influence of electrolytes on contact angles of droplets
under electric field. Analyst, 138(8):2372–2377, 2013.

[39] H. Li, T. Lu, L. Pan, Y. Zhang, and Z. Sun. Electrosorption behavior of graphene in nacl
solutions. J. Mater. Chem., 19(37):6773–6779, 2009.

[40] Y.-M. Lin, H.-Y. Chiu, K. A. Jenkins, D. B. Farmer, P. Avouris, and A. Valdes-Garcia. Dual-
gate graphene fets with fT of 50 ghz. IEEE Electron Device Lett., 31(1):68–70, 2010.

[41] H. Liu, Y. Liu, and D. Zhu. Chemical doping of graphene. J. Mater. Chem., 21(10):3335–
3345, 2011.

[42] R. A. Marcus. Electron transfer reactions in chemistry. theory and experiment. Rev. Mod.
Phys., 65(3):599–610, 1993.

[43] I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard. Current saturation
in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol., 3(11):654–
659, Nov 2008.

[44] H. Moon, S. Cho, R. Garrell, and C.-J. Kim. Low voltage electrowetting-on-dielectric. J.
Appl. Phys., 92(7):4080–4087, 2002.

[45] F. Mugele and J.-C. Baret. Electrowetting: from basics to applications. J. Phys. Condens.
Matter, 17(28):R705–R774, 2005.



53

[46] W. Nelson and C.-J. Kim. Droplet actuation by electrowetting-on-dielectric (ewod): A review.
J. Adhes. Sci. Technol., 26(12-17):1747–1771, 2012.

[47] A. Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim. The electronic properties of
graphene. Rev. Mod. Phys., 81(1):109–162, 2009.

[48] R. A. Nicodemus, S. Corcelli, J. Skinner, and A. Tokmakoff. Collective hydrogen bond
reorganization in water studied with temperature-dependent ultrafast infrared spectroscopy.
J. Phys. Chem. B, 115(18):5604–5616, 2011.

[49] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and
A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669,
2004.

[50] J. H. Ostrowski and J. D. Eaves. The tunable hydrophobic effect on electrically doped
graphene. J. Phys. Chem. B, 118(2):530–536, 2014.

[51] L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Wagh-
mare, and C. Rao. Synthesis, structure, and properties of boron-and nitrogen-doped graphene.
Adv. Mater., 21(46):4726–4730, 2009.

[52] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.,
117(1):1–19, 1995.

[53] J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan, and N. A.
Koratkar. Wetting transparency of graphene. Nat. Mater., 11(3):217–222, 2012.

[54] K. K. F. Riley. Mathematical methods for physics and engineering, 3rd edition. Cambridge
University Press; New York, 2006.

[55] P. Roura and J. Fort. Local thermodynamic derivation of young’s equation. J. Colloid
Interface Sci., 272(2):420–429, 2004.

[56] V. Srinivasan, V. K. Pamula, and R. B. Fair. An integrated digital microfluidic lab-on-a-chip
for clinical diagnostics on human physiological fluids. Lab Chip, 4(4):310–315, 2004.

[57] X. Tan, J. Yang, P. Zeng, E. Kim, C. Huard, and M. Cheng. Electrowetting on flexible,
transparent and conducting single-layer graphene. IEEE 25th Int. Conf. MEMS, pages 1037–
1040, 2012.

[58] X. Tan, Z. Zhou, and M. M.-C. Cheng. Electrowetting on dielectric experiments using
graphene. Nanotechnology, 23(37):375501, 2012.

[59] B. Toshev. Gibbs’ thermodynamics of wetting. Int. J. Mech. Eng. Edu., 34(3):256–262, 2006.

[60] K. Vetter. Electrochemical kinetics: theoretical and experimental aspects. Academic Press:
New York, 1967.



54

[61] T. Werder, J. Walther, R. Jaffe, T. Halicioglu, and P. Koumoutsakos. On the water-carbon
interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J.
Phys. Chem. B, 107(6):1345–1352, 2003.

[62] A. R. Wheeler. Putting electrowetting to work. Science, 322(5901):539–540, 2008.

[63] A. P. Willard and D. Chandler. Instantaneous liquid interfaces. J. Phys. Chem. B,
114(5):1954–1958, 2010.

[64] P. Xu, Y. Yang, S. Barber, M. Ackerman, J. Schoelz, I. A. Kornev, S. Barraza-Lopez, L. Bel-
laiche, and P. Thibado. Giant surface charge density of graphene resolved from scanning
tunneling microscopy and first-principles theory. Phys. Rev. B, 84(16):161409, 2011.

[65] I.-C. Yeh and M. Berkowitz. Ewald summation for systems with slab geometry. J. Chem.
Phys., 111(7):3155–3162, 1999.

[66] T. Young. An essay on the cohesion of fluids. Philos. Trans. R. Soc. London, 95:65–87, 1805.

[67] L. Zhao, R. He, K. Rim, T. Schiros, K. Kim, H. Zhou, C. Gutiérrez, S. Chockalingam, C. Ar-
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Chapter 3

Nonequilibrium Methodology for Simulating Fluid Flow

3.1 Introduction

Novel nanoporous membrane materials and geometries have become ubiquitous with the ad-

vancements made in nanoscale etching and material preparation.1;19;25;34 Understanding fluid flow

through nanochannels at a fundamental level is important for material design of nanofilters.26;36

If fluctuations in the fluid density, temperature, and so on are smooth enough that continuum me-

chanics applies, hydrodynamics can describe, in great detail, the emergent velocity flow fields. On

the molecular length scales appropriate for fluid flow through a two-dimensional sheet, however,

fluctuations destroy these assumptions. While atomistic molecular dynamics is an invaluable tool

for modeling systems at thermal equilibrium,6;23 it remains rather unclear how to extend these

simulation methods to systems that are driven from their thermal equilibrium.

If such driven systems are to maintain a steady-state, just as in thermal systems, there needs

to be a balance between the driving force and its dissipation. Various methods for controlling

temperature, for example, while seemingly straightforward, give spurious and incorrect results for

some model systems.3 This is the fundamental challenge this chapter addresses.

In systems at equilibrium, the steady-state is known by equilibrium statistical mechanics.24

By maximizing the statistical entropy under various constraints, one obtains distribution functions

for various ensembles. Likewise, in molecular dynamics simulations, placing constraints on the

system leads to equations of motion not only consistent with the constraints, but that are also

consistent with expectations for static distribution functions from statistical mechanics.
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We propose an approach very similar to those mentioned. In our method, the current, rather

than the gradient, is a constraint on the system. While in equilibrium systems, one can test the

correctness of a method against its ability to generate known distribution functions, there is no

such procedure for systems away from equilibrium. Steady-states are defined as having spatially-

dependent quantities such as the density, temperature, and particle mass current that fluctuate about

some fixed average values.32 In nonequilbrium simulations a local steady-state thermodynamic

equilibrium can be achieved, for example if the number of particles, temperature, and volume are

held constant, as within the canonical ensemble.24

Fluid flow in molecular dynamics simulations has generally been performed using only two

approaches, the piston and pump methods (§1.1.2).22;39;43;44 These two methods are ad-hoc, but

seem to give reasonable results in some model cases.5;37;39 How closely these methodologies can

simulate reality remains to be fully assessed. We will compare fluid flow simulations through

select pipe-like channels using the pump method and what we will call the Gauss method, which

we will develop below.

Fluid collisions with a membrane wall will exchange momentum and decrease the flow of

the fluid. An external driving force must be applied to the fluid to maintain flow. The temperature

of the system in the presence of an external driving force must be controlled using a thermostat

or heat bath.15 However, application of equilibrium thermostats to nonequilibrium simulations

remains to be fully understood.3;14 Naı̈ve application of equilibrium thermostats to nonequilibrium

simulations has been shown to give spurious results.3;14

Nonequilibrium flow simulations must maintain the Maxwell-Boltzmann distribution of ve-

locities.35 If “local equilibrium” holds, one expects that the microscopic velocity distribution at a

(slowly-varying) spatial point in the fluid should be distributed as P(v) ∼ exp
[
−(v − u(r, t))2/kBT

]
,

where u(r, t) is the streaming velocity of the fluid relative to the lab frame (Equation (3.15)).13 The

streaming velocity itself comes from a spatial and temporal averaging, or “coarse-graining,” of the

fluid motion. In equilibrium simulations, the Maxwell-Boltzmann distribution of velocities is cen-

tered about zero. In nonequilibrium flow simulations, the distribution of velocities will be centered
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about a nonzero value while still maintaining the Maxwell-Boltzmann distribution. One expects

the velocity for particle i to obey, vi(t) = δvi(t) + u(r, t). The quantity δvi(t) is the peculiar velocity

and the streaming velocity u(r, t) is the velocity that the fluid moves, on average, relative to the lab

frame.

We will focus on fluid flow through two-dimensional pipe-like channels with widths be-

tween the molecular and nanoscopic scale. The fluid dynamics through small channels will have

contributions due to the molecular nature of the particles. Larger channels should give results

commensurate with that predicted by continuum mechanics.2;7 Our goal is to develop an atomistic

simulation methodology capable of giving results commensurate with that expected from contin-

uum hydrodynamics while still maintaining velocity distributions from statistical mechanics.

Continuum hydrodynamics predicts that the fluid velocity profile is quadratic perpendicular

the fluid flow direction.7;28;29 This has been observed to break down for channel widths between

five and ten molecular diameters, independent of the magnitude of the fluid flow.40 However, as

we will show, the linear relationship between the pressure gradient and the fluid mass transport

through the channel predicted by Hagen-Poiseuille’s law, a result from continuum hydrodynamics,

still holds for small channels only several atoms wide.

3.2 Simulation Methodology and Theory

We developed a methodology for simulating steady-state nonequilibrium flow of a fluid.

A constraint on the total velocity of the fluid was included into the equations of motion for the

fluid particles. There are two types of constraints in classical mechanics, holonomic and non-

holonomic.17;30 If the constraints are holonomic, as in the case of bond distance constraints, for

example, one minimizes the action with constraints using Langrange multipliers. Instead, the rel-

evant cost function is not the Langrangian action but instead Newton’s equation of motion. This

method is called Gauss’s principle of minimum constraint, and was first introduced into molecular

dynamics simulations to maintain constant temperature.9;12;13
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3.2.1 Gauss’s Principle of Least Constraint for Flow

The total velocity of the fluid will be fixed and included as a hard constraint within the fluid

equations of motion, along with a constraint on the temperature of the fluid. The resultant fluid flux

through the pore will fluctuate about some value, proportional to the total flow of the simulation,

but which cannot be known a priori as it depends on the channel properties, e.g. the channel length

and width.

Gauss’s principle of least constraint provides a powerful method yet relatively straightfor-

ward way to constrain the equations of motion in molecular dynamics simulations.9;11;12;41;42 The

principle states that the actual particle accelerations will be those that minimize a cost function,

C .13 Given knowledge of the particle positions, the force on each particle, Fi, is calculated accord-

ing to the prescribed interatomic potential. The cost function can be written13

C ({r̈α}) =
1
2

N∑
i=1

mi

(
r̈i,α −

Fi,α

mi

)2

− λ f low,αg f low,α − λT,αgT,α, (3.1)

where mi is the mass of particle i, {r̈α} denotes the set of the acceleration component α for all

particles, r̈i,α, N is the total number of fluid particles in the simulation, and λ f low,α and λT,α are

Lagrange multipliers31 for the constraint on the flow, g f low,α, and temperature, gT,α.

The cost function in Equation (3.1) will be minimized with respect to the ith particle ac-

celeration to find the unknown Lagrange multipliers that satisfy the constraints on the flow and

temperature. We will write two constraints in terms of the particle accelerations and derive the

equations of motion for the fluid particles. It is easiest to do this for each dimension separately. We

will write the final equations of motion after we have solved for the unknown Lagrange multipliers.
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Figure 3.1: Peculiar and streaming velocities for a Lennard-Jones fluid. The peculiar velocity is
defined with respect to the lab frame. In a system without flow, the Maxwell-Boltzmann distribu-
tion of velocities is centered about zero (blue dashed line). In a system under flow, the velocity
distribution must maintain the Maxwell-Boltzmann distribution, however it will be centered about
a nonzero value (red dashed line). The offset of the distribution is the added per-particle velocity,
v f low, initially assigned to each fluid particle. In this example v f low = 5 (Lennard-Jones reduced
units) for illustrative purposes. In practice, the shift of the distribution will be much smaller.

The constraint on the fluid velocity, written in the homogenous form, is

g f low,α ≡
d
dt

N∑
i=1

[
ṙi,α − uα(ri,α)

]
=

N∑
i=1

r̈i,α = 0 (3.2)

where ṙi,α is the velocity component α of particle i. As the fluid flows through the course of
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the simulation, the total velocity will remain constant but will become redistributed amongst the

particles. While there will be an overall flow of particles in one direction of the simulation, the

average of local properties such as the density, temperature, or pressure will be constant, i.e. a

steady-state will be achieved. Local streaming velocities will be established, thereby achieving a

steady-state flow. Similarly, the constraint on the temperature is

gT,α =
d
dt

N∑
i=1

mi
(
ṙi,α − uα(ri,α)

)2
− NkbT = 0 (3.3)

=

N∑
i=1

mi
(
ṙi,α − uα(ri,α)

)
· r̈i,α = 0. (3.4)

Let us now turn to finding the equations of motion for the fluid particles under constraint

Equation 3.2. Minimize the cost function, Equation (3.1), with respect to the acceleration compo-

nent α of particle i,

⇒
∂

∂r̈i,α
C =

(
r̈i,α −

1
mi

Fi,α

)
− λ f low − λT mi

(
ṙi,α − uα(ri,α)

)
= 0 (3.5)

⇒ r̈i,α =
1
mi

Fi,α + λ f low + λT mi
(
ṙi,α − uα(ri,α)

)
(3.6)

⇒

N∑
i=1

r̈i,α =

N∑
i=1

1
mi

Fi,α + λ f lowN + λT

N∑
i=1

mi
(
ṙi,α − uα(ri,α)

)
= 0 (3.7)

where in the last step we made use of the constraint, g f low,α. The distribution of particle velocities

in the last term will be distributed according to a Gaussian distribution. Using the central limit

theorem, as the number of fluid particles becomes large, we will assume that contributions due to

this term are negligible.31 Solving for the Lagrange multiplier, λ f low,

⇒ λ f low,α = −
1
N

N∑
j=1

F j,α

m j
. (3.8)

We observe that the Lagrange multiplier for the flow constraint is a sum of all the interatomic forces

acting on the fluid. As mentioned, we will fix the average temperature by application of a Nose-

Hoover thermostat.8;15 The Nose-Hoover thermostat is an extended Lagrangian method that fixes

the average temperature and maintains the canonical distribution for systems at equilibrium.15;24

For systems at nonequilibrium, subtracting off the local streaming velocity from the lab frame
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velocities retains only the peculiar velocity contribution to the temperature and the distribution of

velocities. The Lagrange multiplier for the Nose-Hoover thermostat is15

λT,α = ξ
[
ṙi,α − u(ri,α)

]
(3.9)

where ξ is the Nose-Hoover thermodynamic friction coefficient.10;15 The Nose-Hoover thermostat

couples the system to a heat bath, that exchanges energy in an oscillatory fashion.33 This is different

from the constraint on the flow, which is a hard constraint that is satisfied at every timestep. The

temperature will fluctuate about an average temperature. Finally, writing the equations of motion

including the two constraints,

mir̈i = Fi + fadd − ξ [ṙi − u (ri)] (3.10)

where the additional force, fadd = − 1
N

∑N
i=1 F j. This force can be interpreted as a fluctuating gravita-

tional field. The additional force performs work on the fluid to maintain the prescribed flow, against

the virtual work that the membrane, fixed in space, does on the fluid. The term, ξ [ṙi − u(ri)], is

a profile-unbiased implementation of the Nose-Hoover thermostat, which acts only on the pecu-

liar part of the velocity of each particle.14 Subtracting off the local streaming velocity permits

application of the usual Nose-Hoover thermostat.10;15 The term “profile unbiased” means that the

thermostat damps motion relative to the streaming velocity, not the lab frame.10 Previous work has

shown that this feature corrects spurious predictions from “non Gallilean invariant” thermostats.18

Typical nonequilbrium simulations use a profile-biased thermostat, where the local streaming ve-

locity is assumed to be linearly proportional to the shear of the fluid.13;16 It has been shown that

profile-biased thermostats can lead to artificial alignment of fluid particles in large flows.14 This

could affect particle dynamics through the channels in uncontrollable ways.

There are a number of thermostatting schemes possible for simulations involving fluid pas-

sage through a membrane.3 One can set up simulations that thermostat the fluid and keep the

membrane fixed,44 or one can thermostat the membrane and let the fluid dissipate energy through

collisions with the membrane.16 We chose to thermostat the fluid while keeping the membrane
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rigid. Using the profile-unbiased Nose-Hoover thermostat allows the fluid to reach steady-state

flow while still allowing the system to develop unbiased and natural velocity streamlines. The

strength of performing the simulations this way is that we need not assume any form of the veloc-

ity profiles or temperature gradients, but simply allow the fluid to move according to the equations

of motion. Equation 3.10 was used for all Gauss method simulations presented in this chapter.

3.2.2 System Geometry and Simulation Description

To characterize the Gauss method, a fluid and pipe-like membrane system composed of

Lennard-Jones particles was studied. Simulations were performed in two dimensions to minimize

particle number and reduce computational cost. The basic system geometry is shown in Figure

3.2, and is composed of a fixed membrane with a channel of a prescribed length, Lpipe, and width

which we denote dpipe, in analogy to a pipe diameter in three dimensions. The system is periodic in

both dimensions. When a nonequilibrium mass flux is induced in the +x̂ direction, fluid particles

may pass only through the channel at the center of the simulation box. The membrane is composed

of a face-centered-cubic lattice chosen such that fluid particles cannot pass through the membrane

wall. The fluid-channel interactions were modeled using the Weeks-Chandler-Anderson potential,

which is a purely repulsive potential.4

Fluid particles were initially placed on a cubic lattice with velocities chosen from the Maxwell-

Boltzmann distribution.15;24 A prescribed additional velocity, v f low, was added to each fluid parti-

cle. This defines a total flow for the simulation that is kept constant for each timestep of the

simulation.

The temperature of the fluid particles was maintained using a profile-unbiased14 implemen-

tation of the Nose-Hoover thermostat with a spatially prescribed local grid scheme to define a

local temperature (see Appendix §3.5.1 for more details).21 The channel particles were held fixed

throughout the simulation. Slight differences have been observed for simulations that thermostat

the fluid compared to those that thermostat the membrane.3

We will compare simulation results from both the pump and Gauss methods. See §1.1.2 for a
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discussion of the pump method. All flow is produced in the +x̂ direction. The input parameters for

the two methods are different. Therefore, individual simulations between the two methods cannot

be easily compared. In the spirit of simulations already reported in the literature,22;37;38;44 we report

the studied pump simulations in terms of the external force applied, fext = 0.0, 0.1, 0.3, 0.5, 1.0x̂.

For the Gauss method we studied v f low = 0.0, 0.01, 0.02, 0.03, 0.04x̂. All units are in reduced

Lennard-Jones units. Additional simulation details are provided in Appendix §3.5.1.
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Figure 3.2: Two nonequilibrium methods for studying flow through nanoscopic channels. Lpipe

and dpipe are the channel length and width respectively. Lx and Ly are the total lengths of the
simulation box. (A) In the Gauss method, an additional force is applied to all particles to maintain
the constraint on the total velocity of the fluid particles and produce a mass flux in the +x̂ direction.
(B) In the pump method, an external force is applied to fluid particles occupying a prescribed pump
region, of prescribed width Lpump. Membrane atoms are in red, and the fluid particles are in blue.
The membrane atoms are held fixed throughout the simulations for computational efficiency.
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3.3 Results and Discussion

The implementation of the Gauss method according to Equation 3.10 was studied for the

Lennard-Jones fluid and channel system shown in Figure 3.2. The simulation box extends well

beyond the vicinity of the membrane. It is important to have a large reservoir of fluid particles that

extends well beyond the vicinity of the membrane to avoid finite size effects of the simulation. First

and foremost, the constraint on the total fluid velocity according to Equation 3.2 was satisfied at

every timestep of the simulation. The total fluid momentum in the x dimension was held constant

throughout the simulation runs.

The additional external force shows small fluctuations throughout the course of the simu-

lation, see Figure 3.3. Although the flow is taken to be only in the +x̂ direction, we applied a

corrective force for both dimensions. We observe that the corrective force is of a similar magni-

tude in both the x and y dimensions.

The velocity field in the vicinity of the channel is shown in Figure 3.4 for Gauss method

simulations. As the flow increases, the velocity field streamlines extend beyond the vicinity of the

channel, stretching out into the fluid reservoirs on either side of the membrane. The persistence

of the velocity streamlines require the use of large box dimensions for the simulations in order to

minimize artificial correlations between fluid particles across the periodic x dimension. Navier-

Stokes is a statement of Newton’s second law for fluid.7 For an incompressible fluid,∗

∇P = f − ρ
D
Dt

v (3.11)

where ∇P is the gradient of the pressure tensor, ρ is the density of the fluid, v is the fluid velocity,

D/Dt = ∂tv + v · ∇v is the material derivative, and f is any external force applied to the fluid. For

the pump method, f = fext, and for the Gauss method f = fadd. The pressure is calculated from the

velocity streamlines using the method-of-planes.20

Navier-Stokes predicts that the larger the gradient in the velocity field, the larger the gradient

in the pressure. As the flow increases in Figure 3.4, the pressure gradient is therefore expected to
∗ For an incompressible fluid the density remains constant, or equivalently that ∇ · v = 0.
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increase. We will show later on that this is indeed the case (Figure 3.8).

The center of mass velocity is well maintained throughout the course of the simulation (Fig-

ure 3.5). This is to be expected because the additional force is applied homogeneously to every

fluid particle in the system. If the additional flow per particle is subtracted, v f low, the center-of-

mass velocity for both the x and y dimensions is seen to be on the order of numerical precision.

Importantly, the Gauss method maintains the Maxwell-Boltzmann distribution of velocities (Figure

3.10).
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Figure 3.3: Additional nonequilibrium constraint force for constant flow as a function of time. fadd

is the additional force added to each fluid particle in the simulation, given by Equation 3.10. For
the data shown, fadd,x = (1.28± 14.1)× 10−2 and fadd,y = (−9.29± 132.)× 10−2. This data is for the
channel shown in Figure 3.2, with v f low = 0.04, Lpipe = 37.57 and dpipe = 20.00.
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Figure 3.4: Velocity flow field with increasing nonequilibrium fluid flow through a channel of
length, Lpipe = 37.57, and width, dpipe = 20.00 using the Gauss method. v f low is the initial additive
per-particle velocity assigned at the start of the simulation. The direction of flow is in the +x̂
direction. The simulation box is larger than the area shown (Lx = 327.57,Ly = 227.04). Velocity
fields from the pump method simulations are qualitatively similar (not shown).
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Figure 3.5: Center-of-mass velocity as a function of time. The center-of-mass velocity is well
maintained throughout the simulation in both the x and y dimensions. The nonequilibrium flow
in the +x̂ direction, v f low, is subtracted off the x component of the center-of-mass velocity, vCOM,x

for ease of comparison. Similar fluctuations are seen for the y component center-of-mass velocity,
vCOM,y. Fluctuations about zero for both components are on the order of numerical precision.

3.3.1 Comparison of Gauss Method with Pump Method

Continuum hydrodynamics predicts that the velocity component parallel the direction of flow

is quadratic along the direction perpendicular the flow, cf. Equation (3.61).7;28;29 Figure 3.6 shows
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that this is indeed the case for both the Gauss and pump simulations studied with dpipe = 20.00.

The velocity profile deviates from this prediction for dpipe = 5.00, as expected due to the atomic

size of the channel. For the smaller channel, it appears that particle packing plays a role. The

velocity profile exhibits oscillations or bumps commensurate with the particle size. This has also

been seen previously for channels between five and ten molecular diameters.40

In the current implementations, we note that there is no direct way to set up quantitatively

comparable Gauss and pump simulations. The fluid flow in the channel depends on the geometry

of the channel. One could develop a method whereby a subvolume of the simulation is used to

adjust the applied force and thereby the fluid flux, but is beyond the scope of the current work. The

Gauss method requires a prescribed v f low, which determines the total velocity of the simulation.

For the pump method, the external force fext is defined and applied to a prescribed region well away

from the channel. The pressure or density gradient, along with the flow of the fluid, are developed

as a result of these prescriptions. If the channel length, Lpipe, or width, dpipe, is changed so too will

the pressure and flux.

The temperature of the simulations for both methods are well maintained at the prescribed

temperature (Figure 3.7). The temperature is shown as a function of x, along the direction of flow

for two selective slices in y. The temperature was calculated according to Equation (3.17). The

temperature for the nonequilibrium simulations exhibit a temperature gradient in the vicinity of

the channel, that is hard to quantity given the statistical noise. The pump simulation, fext = 0.3x̂,

was chosen such that total flow is qualitatively comparable to the Gauss method simulation with

v f low = 0.04x̂. As mentioned, it is not possible to have quantitatively comparable simulations for

the two methods. It is worth noting that the temperature gradient inside the channel is larger for

higher magnitudes of flow (not shown).
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Figure 3.6: Fluid velocity profile in the channel as a function of the dimension perpendicular the +x̂
fluid flow. (A,B) Gauss method simulations, with v f low = 0.0, 0.01, 0.02, 0.03, 0.04x̂ going from
bottom to top respectively. (C,D) Pump method simulations, with fext = 0.0, 0.1, 0.3, 0.5, 1.0x̂
going from bottom to top respectively. The velocity profiles for both methods are quadratic for
the larger pipe, dpipe = 20.00 (A,C), as expected from continuum hydrodynamics, cf. Equation
(3.64). Circles are data and the dashed lines are quadratic fits. The profiles are nonquadratic
for simulations with dpipe = 5.00 (C,D). The velocity data shown here are taken from the same
simulations as that appearing in Figure 3.8.
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Figure 3.7: Temperature, T , as a function of x, along the direction of flow, for both Gauss (A)
and pump (B) simulations. The temperature was calculated according to Equation (3.17). The
temperature data for nonzero flow simulations (v f low = 0.04 and fext = 0.3), are offset from the
prescribed temperature, T = 2.0 for clarity. For nonzero fluid flow the temperature is observed to
slightly rise inside the channel. Vertical dashed lines show the boundaries of the channel. The data
is shown through the middle of the channel (y=0, blue line), and near the channel wall (y=7.63,
red line).
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3.3.2 Hagen-Poiseuille’s Law for Gauss and Pump Method Simulations

The pressure gradient inside the channel was calculated using Equation 3.16. Statistical noise

is greater in the density (not shown) than in the pressure. The microscopic flux was calculated from

numerical integration of the velocity profile according to Equation 3.64. Hagen-Poiseuille’s law

for an incompressible fluid predicts a linear relationship between the flux and pressure gradient.2

Figure 3.8 shows that this is indeed the case for both channel geometries studied for both the Gauss

and pump simulations.

An overview of the two methods is provided in Table 3.1. The Gauss and pump methods each

have advantages and disadvantages. Both methods are incapable of prescribing a fluid flow a priori

inside the channel because it depends on the channel geometry, and exhibit a linear relationship

between the flux J and change in pressure ∆P. Both methods are difficult to converge with respect

to simulation box dimension (not shown).

One distinct advantage of the Gauss method is that the simulation requires only one param-

eter, v f low. Prescribing v f low is the same as fixing the total momentum of the fluid, that is held

constant throughout the simulation. The particles are then propagated according to the equations

of motion. This is in contrast to the pump simulations that require a prescribed external force,

the width of the pump region, and the pump position. However, the flow range is larger for the

pump method than the Gauss method. For higher v f low than those presented, the density in the

Gauss method simulation oscillates wildly and the density is depleted on the exit side of the chan-

nel (not shown). Care must therefore be taken in choosing v f low so as to not excessively drive the

simulation.



73

0 0.01 0.02 0.03 0.04 0.05 0.06

0

0.2

0.4

0.6

0.8

1

J

 

 

Pump Method
Gauss Method

∆
P

Figure 3.8: Fluid flux, J, versus change in pressure, ∆P, for both Gauss and pump method simula-
tions. The data for the two pipes follows a linear relationship as expected from Hagen-Poiseuille’s
law, Equation (3.64). Both the Gauss and pump methods are seen to exhibit the linear trend ex-
pected from the Hagen-Poiseuille law. For the two pipe dimensions studied, the two methods are
seen to qualitatively agree for the range of flux studied here. Error bars are one standard deviation,
and are shown for both dimensions. The uncertainty in J is much larger than the uncertainty in ∆P
(difficult to see on this scale). The flux was calculated according to Equation 3.64.
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Pump MethodGauss Method

Advantages

Disadvantages

discontinuity in potential

smaller accessible

flow range

density relaxes 

naturally through-

out the simulation

driving force prescribed in 

terms of the chemical potential 

difference between two sides of 

a membrane.

pump needs to be “far enough 

away” from membrane

mimics a hydrostatic pressure.

Table 3.1: Comparative summary of the Gauss and pump methodologies. The pump method pre-
scribes a region in which particles experience a discontinuity in the potential. This causes a sudden
change in the density near the vicinity of the pump. In contrast, the density in the Gauss method
simulations relax naturally throughout the simulation. The pump method has the advantage that it
mimics a hydrostatic pressure. However, one needs to prescribe the size of the pump region. In
practice it is nontrivial to prescribe this region such that fluid dynamics in the channel are indepen-
dent of its size or location. The Gauss method is applicable to smaller flow ranges. If a system is
prescribed with an excessively large v f low, the density shows wild oscillations in the density (not
shown).

3.4 Conclusion

A steady-state nonequilibrium flow of a Lennard-Jones fluid was simulated using molecular

dynamics with a constraint on the total flow of the simulation using Gauss’s principle of least

constraint. The method defines the total momentum of the fluid as a constant of the simulation,

and is held constant at each timestep. The method was shown to be comparable to simulations
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where an external force is applied to a region of the simulation commonly used in the literature.

Importantly, the Maxwell-Boltzmann distribution of velocities was maintained for the developed

method. The quadratic velocity profile expected from continuum hydrodynamics was observed for

both methods applied to a pipe-like channel with width 20.00. Hagen-Poiseuille’s law, that predicts

a linear relationship between the flux and pressure gradient, was confirmed for channel widths of

20.00 and 5.00 using both the pump and Gauss methods. The developed method will allow for

further study of nonequilibrium fluid flow through nanoscopic channels.

3.5 Appendix

3.5.1 Additional Simulation Details

Unless otherwise specified, all Lennard-Jones fluid and channel simulations were performed

with the set of parameters provided in Table 3.2. All simulations were performed using a modified

version of the LAMMPS molecular dynamics software.27

The potential between the fluid particles was modeled using the Lennard-Jones 12-6 poten-

tial, with a hard cutoff at 2.5.

VLennard−Jones(r) = 4ε f luid− f luid

[(σ f luid− f luid

r

)12
−

(σ f luid− f luid

r

)6
]

(3.12)

where r is the interatomic distance between fluid particles, and ε f luid− f luid is the potential well depth.

Similar to Reference 16, we modeled the fluid-channel interactions using the Weeks-Chandler-

Anderson (WCA) potential,4

VWCA(r) = 4ε f luid−channel

[(σ f luid−channel

r

)12
−

(σ f luid−channel

r

)6
]

+ ε for r < 21/6σ, (3.13)

with VWCA(r ≥ 21/6σ) = 0. The addition of ε makes the WCA potential a purely repulsive potential.

The initial density, ρ0 was calculated using a similar convention as Muller et al.,16

ρ0 =
N f luid

Aaccessible
=

N f luid

LxLz −
(
Lpipe + 2σ

) (
Lz − dpipe + 2σ

) (3.14)
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where N f luid is the number of fluid particles and Aaccessible is the area accessible to the fluid. The

subtraction of 2σ is an approximation to account for the repulsion of the membrane walls. Table

3.2 provides additional simulation parameters.

Lpump amemb ρ0 σ f luid− f luid σ f luid−channel ε f luid− f luid ε f luid−channel m f luid T

5.0 1.7472 0.545 1.0 1.0 1.0 1.0 1.0 2.0

dt tdamp

0.001 0.05

Table 3.2: Simulation parameters for Lennard-Jones for fluid and channel systems. All parameters
are given in the standard Lennard-Jones reduced units. Lpump is the length of the pump region as
defined in Figure 3.2, amemb is the lattice constant of the face-centered-cubic channel membrane,
ρ0 is the initial simulation density calculated according to Equation (3.14), the various σ’s and ε’s
denote the Lennard-Jones 12-6 potential’s inter-particle distance and well depth respectively, m f luid

is the mass of the fluid particles, T is the overall temperature of the fluid, dt is the simulation time
step, and tdamp is the Nose-Hoover thermostat damping coefficient.

The streaming velocity corresponds to the shift of the center for the Maxwell-Boltzmann

velocity distribution (Figure 3.1),

u(r, t) =
1
ρ(r)

∑
i∈E(r)

miṙiδ (r − ri) =

∑
i∈Ω(r) miṙiδ (r − ri)∑
i∈Ω(r) miṙiδ (r − ri)

. (3.15)

3.5.2 Pressure in Channel

The pressure drop across the channel is a key quantity for characterizing the flow through

our channel geometries, and should be proportional to the density drop. We need only concern

ourselves with the pressure drop in the direction of flow, taken to be the ±x̂ direction, and there-

fore need only calculate the pressure tensor component p̄xx (Reference 20, Equation 8). In two

dimensions

p̄xx(dpipe, x) =
1

dpipe∆x
〈

∑
i∈(dpipe∆x)

miv2
i,x〉 +

1
2dpipe

〈
∑

xn∩Ly(x)

N∑
i=1

Fixsgn(xi − x)〉 (3.16)
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where Fix is the x component of the force on atom i, and Ly(x) is the line perpendicular the flow

between the point x and xi. Figure 3.9 shows pictorially how we discretize space inside the channel

to calculate the pressure. Fix includes only those interactions which dissect the line Ly(x).

y

x

∆x
L
y
(x)

x
n

Figure 3.9: Calculating pressure as function of x in the channel configuration. Particles inside the
pipe are enclosed in the red dashed rectangle, drawn between atom centers of the channel. The
black dashed circle illustrates the Lennard-Jones cutoff. All forces acting on the chosen particle
within the dashed circle would be included, i.e. the particle in a given slab will experience a force
from channel atoms and those outside the pipe if they are within the Lennard-Jones cutoff.
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3.5.3 Additional Physical Quantities

3.5.3.1 Maxwell-Boltzmann Distribution of Velocities

Simulations performed using the Gauss method maintain the Maxwell-Boltzmann distribu-

tion of velocities (Figure 3.10). The data presented in Figure 3.10 was taken from simulation of a

channel with a width of 44σ and v f low = 0.4. Particles near the channel wall and in the middle of

the channel maintain a Gaussian-shaped distribution.
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Figure 3.10: Maxwell-Boltzmann distribution of velocities for flow through a pipe using Gauss
method with v f low = 0.4. The distribution is Gaussian near the channel wall (red line) and in the
middle of the channel (blue line) as expected. This data was taken from simulation of a channel
with a width of 44σ. The channel extended across the periodic dimension in the direction of flow
in order to gather good statistics.
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3.5.3.2 Temperature

The local temperature was calculated using

T (x, y) = 〈
1

Ndo f

∑N
i=1 δ(x − xi)δ(y − yi)miv2

i

N(x, y)
〉 (3.17)

where the angle brackets denote a time average, and Ndo f the number of degrees of freedom (2 for

the two-dimensional simulations). The total number of particles was calculated

N(x, y) =

N∑
i=1

δ(x − xi)δ(y − yi). (3.18)

3.5.3.3 Microscopic Fluid Flux

The fluid flux was calculated from trajectory positional and velocity data. The number of

particles passing through per unit time, dN/dt, can be written, in three dimensions

dN
dt

=

∫
dV

(
~∇ · ~J

)
=

∫
d ~A · ~J =

∫
dAn̂ · J (3.19)

=

∫
dx

∫
dy ρ(x, y)vx +

∫
dx

∫
dzρ(x, z)vy +

∫
dy

∫
dzρ(y, z)vx (3.20)

[=]length2 1
length3

length
time

=
1

time
(3.21)

where we made use of the divergence theorem (also known as Gauss’s theorem). To be clear, since

one dimension had to be integrated over,

ρ(α, β) =
1
Lγ

N∑
i=1

δ(α − αi)δ(β − βi) [=]
1

volume
(3.22)

where α, β, γ = x, y or z. This has the correct dimensions. Now, in two dimensions

dN
dt

=

∫
dA (∇ · J) =

∮
C

ds n̂ · J (3.23)

=

∫
dx ρ(x)vy +

∫
dy ρ(y)vx (3.24)

[=]length
1

length2

length
time

=
1

time
, (3.25)

where again, being explicit

ρ(α) =
1
Lβ

N∑
i=1

δ(α − αi) [=]
1

area
, (3.26)
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where an integration was already performed over one of the dimensions. We are only interested in

the flux associated with the flow in the x dimension, and so define

dNx(x, y)
dt

=

∫ y+∆y/2

y−∆y/2
dy′ρ(x, y′)vx [=]

1
time

(3.27)

⇒ Jx(x) =

∫
dy

dNx(x, y)
dt

=

∫
dy

{∫ y+∆y/2

y−∆y/2
dy′ρ(x, y′)vx

}
[=]

length
time

(3.28)

=

∫
dy


∫ y+∆y/2

y−∆y/2
dy′

N∑
i=1

δ(x − xi)δ(y′ − yi)vxi

 . (3.29)

3.5.4 Hagen-Poiseuille’s Law for Fluid Flow

3.5.4.1 Circular Pipe in 3D

The parabolic velocity for a 3D circular pipe is (with flow in the ẑ direction) (2, 10-21)

uz(r) =
1

4µ
dp
dz

(
r2

0 − r2
)
. (3.30)

Integrating the velocity over the pipe area to get the volumetric flux,

Q =

∫ r0

0
dr 2πruz(r) = 2π

∫ r0

0
dr

[
1

4µ
dp
dz

(
rr2

0 − r3
)]

=
π

2µ
dp
dz

[
r2

0
r2

2
−

r4

4

] ∣∣∣∣∣r=r0

r=0
(3.31)

=
π

2µ
dp
dz

[
r4

0

2
−

r4
0

4

]
=
πr4

0

8µ
dp
dz
. (3.32)

Taking the change in pressure over the length of the pipe, dp→ ∆P and dz→ L,

⇒ Q =
πr4

0

8µ
∆P
L

(3.33)

where ∆P > 0. This is a familiar result for a circular pipe. Importantly, it tells us that the volumetric

flux is simply the integration of the velocity profile over the area through which the fluid passes.

3.5.4.2 Rectangular Pipe in 3D

Consider first the case of a rectangular pipe in 3D. The 2D case will easily follow from this

discussion. We will make use of the coordinate system shown in Figure 3.11.
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dP
1

P
2

mass flux
z

Figure 3.11: Geometry for Hagen-Poiseuille derivation. The membrane is parallel to the x, z plane.
The pressure P2 is taken to be less than P1, and the mass flux therefore flows in the x̂ direction.
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The y and z velocity components are independent of time, and

vy = vz =0 (3.34)

⇒
∂vy

∂y
+
∂vz

∂z
=0. (3.35)

Requiring mass continuity or mass conservation (§3.5.5),

∂vx

∂x
=0 (3.36)

and by Navier-Stokes for an incompressible fluid (§3.5.6)

−
∂P
∂x

+ µ
∂2vx

∂y2 =0 (3.37)

⇒
∂P
∂x

=µ
∂2vx

∂y2 . (3.38)

The gradient of the pressure must be equal to a constant, so we must have

∂P
∂x

=c1 ⇒ P = c1x + c2. (3.39)

Use the boundary conditions

x = 0 P = P1 ⇒c2 = P1 (3.40)

x = L P = P2 ⇒c1 = −
P1 − P2

L
= −

∆P
L

(3.41)

⇒ P =P1 −
∆P
L

x (3.42)

⇒
∂P
∂x

= −
∆P
L

(3.43)

Equation 3.38
=========⇒ −

∆P
L

=µ
∂2vx

∂y2 ⇒
∂2vx

∂y2 = −
∆P
µL

(3.44)

⇒
∂vx

∂y
= −

∆P
µL

y + c3 (3.45)

⇒ vx = −
∆P
2µL

y2 + c3y + c4. (3.46)

Using no slip boundary conditions, vx(y = d/2) = 0, vx(y = −d/2)=0, (Reference 7, Equations
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6.2-9)

⇒ 0 = −
∆P
2µL

d2

4
+

d
2

c3 + c4 (3.47)

0 = −
∆P
2µL

d2

4
−

d
2

c3 + c4 (3.48)

Equation 3.47+Equation 3.48
====================⇒ C4 =

∆P
2µL

d2

4
(3.49)

Equation 3.47−Equation 3.48
====================⇒ C3 =0 (3.50)

⇒ vx = −
∆P
2µL

y2 +
∆P
µL

d2

4
=

∆P
2µL

[
d2

4
− y2

]
(3.51)

⇒ vx =
∆P
2µL

[
d2

4
− y2

]
(3.52)

which is the well-known result predicing a parabolic velocity profile.7 Integrating the velocity

profile to find the flow rate,

Q =

∫ d/2

−d/2
vx(y) dy

∫ w

0
dz [=]

volume
time

(3.53)

⇒ Q =w
∫ d/2

−d/2
dy vx(y) = w

∫ d/2

−d/2
dy

{
∆P
2µL

[
d2

4
− y2

]}
(3.54)

=w
∆P
2µL

{
d2

4

[(
d
2

)
−

(
−d
2

)]
−

y3

3

∣∣∣∣∣y=d/2

y=−d/2

}
= w

∆P
2µL

{
d3

4
−

[
(d/2)3

3
−

(−d/2)3

3

]}
(3.55)

=w
∆P

12µL
d3 (3.56)

⇒ ∆P =
12µL
d3w

Q (3.57)

where w is the width of the rectangular pipe in the z dimension. Averaging Q by the cross-sectional

area, w × d,

⇒ Q =
∆Pd2

12µL
(3.58)

⇒ ∆P =
12µL

d2 Q. (3.59)

This result for a rectangular pipe is known (Reference 39, Equation 7). Taking a look at units, note

Q[=]
(Pressure)

(
length2

)
(Pressure time) (length)

=
length
time

. (3.60)
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3.5.4.3 Rectangular Pipe in 2D

The results for fluid flow through a two-dimensional pipe are identical up to Equation 3.52,

again we predict for the velocity profile (Reference 7, Equations 6.2-9)

⇒ vx =
∆P
2µL

[
d2

4
− y2

]
. (3.61)

Integrate the velocity profile and average over the channel width (was cross-sectional area in 3D),

⇒ Q =
1
d

∫ d/2

−d/2
vx(y) dy =

1
d

(
∆P

12µL
d3

)
(3.62)

⇒ Q =
∆P

12µL
d2[=]

(Pressure)
(Pressure time) (length)

(
length2

)
=

length
time

(3.63)

⇒ ∆P =
12µL

d2 Q, (3.64)

which is the same as the 3D case (Equation (3.60)).

3.5.5 Continuity Equation for Mass Conservation

The continuity equation is a statement of mass balance. The mass continuity can be written

using the following train of thought,13 the total mass in a prescribed volume is written

M =

∫
V

dr ρ (r, t). (3.65)

Mass flowing through an enclosed surface is the velocity times the density (Reference 13, Equation

2.2),

dM
dt

= −

∫
S

dS · ρ (r, t) u (r, t) = −

∫
V

dr ∇ ·
[
ρ (r, t) u (r, t)

]
, (3.66)

where the divergence theorem has been used. An alternative way to write the change in density is

(Reference 13, Equation 2.3)

dM
dt

=

∫
V

dr
∂ρ(r, t)
∂t

. (3.67)
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Using the preceding, we can equate (Reference 13, Equation 2.4)

∂ρ (r, t)
∂t

= − ∇ ·
[
ρ (r, t) u (r, t)

]
(3.68)

⇒
∂ρ (r, t)
∂t

+ ∇ ·
[
ρ (r, t) u (r, t)

]
=0 (3.69)

⇒
∂ρ (r, t)
∂t

+ ∇ · J =0 (3.70)

where we defined the flux, J = ρ (r, t) u (r, t). Manipulating these equations more,

∂ρ

∂t
+ ∇ · J =0

=
∂ρ

∂t
+ ∇ · (ρv) =0

=
∂ρ

∂t
+ ∇ρ · v + ρ∇ · v =0 (3.71)

=
∂ρ

∂t
+

(
∂ρ

∂x
vx +

∂ρ

∂y
vy +

∂ρ

∂z
vz

)
+

(
ρ
∂vx

∂x
+ ρ

∂vy

∂y
+ ρ

∂vz

∂z

)
=0. (3.72)

The total derivative of the density reads

dρ
dt

=
∂ρ

∂t
+
∂ρ

∂x
∂x
∂t

+
∂ρ

∂y
∂y
∂t

+
∂ρ

∂z
∂z
∂t

(3.73)

=
∂ρ

∂t
+ ∇ρ · v. (3.74)

For an incompressible fluid

dρ
dt

=0 (3.75)

⇒
∂ρ

∂t
= − ∇ρ · v (3.76)

⇒ ρ∇ · v =0 (3.77)

⇒ ∇ · v =0 (3.78)

⇒
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
=0. (3.79)

We note that in the above, for an incompressible fluid,

∇ · v =0. (3.80)

If the density in a volume element changed with time, this would have meant that the fluid com-

pressed or expanded, which would then be properly termed a compressible fluid.
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3.5.6 Navier-Stokes

The Navier-Stokes equation in Cartesian coordinates, for the x component reads (Table 5-7

of Reference 7),

ρ

[
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

]
=ρ fx −

∂P
∂x

+ µ

[
∂2vx

∂x2 +
∂2vy

∂y2 +
∂2vz

∂z2

]
. (3.81)

For all of our simulations, we will consider flow in the x direction. We have vy = vz = ∂vx
∂t = 0, and

so

⇒
∂P
∂x

=µ
∂2vx

∂x2 , (3.82)

having set the external force, fx = 0. If this were included, it would simply be a constant shift.
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